Вопрос1 Нагрузочные стенды, применяемые при испытаниях автомобильных двигателей. Вопрос2 Классификация автомобильных эксплуатационных материалов.
Скачать 7.22 Mb.
|
Октановое число число, соответствующее характеристике детонационной стойкости топлив для двигателей с воспламенением от искры; численно равно объемной доле изооктана (его стойкость принята за 100) в смеси с Н-гептаном (его стойкость принята за 0), при которой эта смесь по детонационным характеристикам эквивалентна испытуемому топливу (это определение больше относится к ОЧМ). В любом случае, ОЧ – это мера способности топлива противодействовать детонации в карбюраторном или инжекторном двигателях, а определяется ОЧ по исследовательскому (ОЧИ) или по моторному (ОЧМ) методам. Присутствует в марке бензина, как число – А-76 (моторный метод), АИ-92 (исследовательский метод), АИ-95, АИ-98. Чем выше октановое число, тем более высокие степени сжатия может выдержать топливо без детонации. Следовательно, двигатель на бензине с более высоким октановым числом может развить большую мощность. В США и Канаде используется октановый индекс. Для повышения октанового числа используются различные присадки Исследовательский метод определения ОЧ RON – метод определения октанового числа для высокооктановых бензинов, о чем свидетельствует буква «И» в обозначении бензина в России (АИ-96), хотя допускается выпуск бензинов А-80, А-92 и А-96, октановое число которых определено по исследовательскому методу. Исследовательский и моторный методы определения ОЧ отличаются только условиями проведения испытаний: в моторном температура и обороты выше, поэтому октановое число, определенное по этому методу, ниже, чем полученное по исследовательскому. Например, по моторному методу ОЧ Аи-98 получилось бы равным 88. Отсюда следует возможность существования бензинов с октановым числом более 100, теоретически, казалось бы, невозможным (правда, они используются только в авиации). Прямой зависимости между результатами замеров по моторному и исследовательскому методам нет Моторный метод определения ОЧ MON – метод определения октанового числа по аналогии. Одноцилиндровый мотор с переменной степенью сжатия доводят до появления детонации исследуемого топлива. Затем подбирается смесь двух видов углеводородов – изооктана, который считается абсолютно не склонным к детонации (ОЧ=100), и Н-гептана, чья детонационная стойкость приравнена к нулю (ОЧ=0). Процентное содержание изооктана в смеси, детонирующей при той же степени сжатия, что и исследуемое топливо, и будет являться октановым числом последнего. В России автомобильные бензины обозначаются буквой «А» и цифрами, соответствующими октановому числу. Существует также исследовательский метод Вопрос55: Состав отработавших газов и его влияние на здоровье человека. Выхлопные газы (отходящие газы) — отработавшее в двигателе рабочее тело. Являются продуктами окисления и неполного сгорания углеводородного топлива. Выбросы выхлопных газов — основная причина превышения допустимых концентраций токсичных веществ и канцерогенов в атмосфере крупных городов, образования смогов, являющихся частой причиной отравления в замкнутых пространствах. В отработавших газах автомобильных двигателей насчитывается свыше 100 различных компонентов, большинство из которых токсичны. Примерный состав отработавших газов бензиновых и дизельных двигателей приведен в табл.2:
* Токсичные компоненты ** Канцерогены Наиболее токсичными компонентами отработавших газов бензиновых двигателей являются: оксид углерода ( СО ), оксиды азота ( NОx ), углеводороды ( СnHm ), а в случае применения этилированного бензина - свинец. В отработавших газах обнаружен также акреолин, который поступает в окружающую среду ( особенно при работе дизельных двигателей). Он имеет запах пригорелых жиров ( при содержании более 0,004 мг/л ), вызывает раздражение верхних дыхательных путей, а также воспаление слизистой оболочки глаз. Оксид углерода образуется в бензиновых двигателях при сгорании топливовоздушных смесей с некоторым недостатком кислорода, а также вследствие диссоциации диоксида углерода, возникающей при высоких температурах. В обычных условиях СО- бесцветный газ без запаха, он легче воздуха и поэтому может легко распространятся в атмосфере. Механизм токсического действия СО определяется способностью превращать часть гемоглобина крови в карбоксигемоглобин, вызывающий нарушение тканевого дыхания. Наряду с этим СО оказывает прямое влияние на тканевые биохимические процессы, влекущие за собой нарушение жирового и углеводного обмена, витаминного баланса и т.д. Токсический эффект СО связан также с его непосредственным влиянием на клетки центральной нервной системы. При действии на человека СО вызывает головную боль, головокружение, быструю утомляемость, раздражительность, сонливость, боли в области сердца. Острые отравления наблюдаются при вдыхании воздуха с концентрацией СО более 2,5 мг/л в течение 1 ч. Оксиды азота в отработавших газах образуются в результате обратимой реакции окисления азота кислородом воздуха под воздействием высоких температур и давления в цилиндрах двигателя. Повышение максимальной температуры рабочего цикла и избыток кислорода - основные факторы, способствующие образованию оксидов азота. По мере охлаждения отработавших газов и разбавления их воздухом оксид азота превращается в диоксид и т.д. Оксид азота NO - бесцветный газ, диоксид азота NO2 - газ красно-бурого цвета с характерным запахом. Оксиды азота при попадании в организм человека соединяются с водой. При этом они образуют в дыхательных путях соединения азотной и азотистой кислоты. Оксиды азота раздражающе действуют на слизистые оболочки глаз, носа, рта. Воздействие NO2 cпособствует развитию заболеваний легких. Симптомы отравления проявляются только через 6 ч. в виде кашля, удушья, возможен нарастающий отек легких. Причиной образования углеводородов СН является неоднородность состава горючей смеси в камере сгорания двигателя, а также неравномерность температуры и давления в различных ее частях. В некоторых зонах сгорания топливо практически не сгорает, так как происходит обрыв цепной реакции окисления углеводородов. Помимо этого, некоторые углеводороды СН являются сильнейшими канцерогенными веществами (бензапирен), переносчиками которых могут быть частички сажи, содержащиеся в отработавших газах. Озон разъедает глаза и легкие, а выбросы NОх участвуют в формировании кислотных дождей. В отработавших газах дизельного двигателя обнаружено канцерогенное вещество - диоксин (циклический эфир), представляющий собой бесцветную горючую жидкость. Диоксины и близкие им соединения во много раз токсичнее таких ядов, как кураре и цианистый калий. В случае применения этилированных бензинов около 50% свинца осаждается в виде нагара на деталях двигателя и в выхлопной трубе, остаток уходит в атмосферу. Присутствие свинца в воздухе вызывает серьезные поражения органов пищеварения, центральной и периферической нервной системы. Воздействие свинца на кровь проявляется в снижении количества гемоглобина и разрушении эритроцитов. Вопрос56: МОТОРНЫЕ МАСЛА Масла, применяемые для смазывания поршневых двигателей внутреннего сгорания, называют моторными В зависимости от назначения моторные масла подразделяют на масла для дизелей, масла для бензиновых двигателей и универсальные моторные масла, которые предназначены для смазывания двигателей обоих типов. Все современные моторные масла состоят из базовых масел и улучшающих их свойства присадок. По температурным пределам работоспособности моторные масла подразделяют на летние, зимние и всесезонные. В качестве базовых масел используют дистиллятные компоненты различной вязкости, остаточные компоненты, смеси остаточного и дистиллятных компонентов, а также синтетические продукты (поли-альфа-олефины, алкилбензолы, эфиры). Большинство всесезонных масел получают путем загущения маловязкой основы макрополимерными присадками. По составу базового масла моторные масла подразделяют на синтетические, минеральные и частично синтетические (смеси минерального и синтетических компонентов). Общие требования к моторным маслам Моторное масло - это важный элемент конструкции двигателя. Оно может длительно и надежно выполнять свои функции, обеспечивая заданный ресурс двигателя, только при точном соответствии его свойств тем термическим, механическим и химическим воздействиям, которым масло подвергается в смазочной системе двигателя и на поверхностях смазываемых и охлаждаемых деталей. Взаимное соответствие конструкции двигателя, условий его эксплуатации и свойств масла - одно из важнейших условий достижения высокой надежности двигателей. Современные моторные масла должны отвечать многим требованиям, главные из которых перечислены ниже:
К некоторым маслам предъявляют особые, дополнительные требования. Так, масла, загущенные макрополимерными присадками, должны обладать требуемой стойкостью к механической термической деструкции; для судовых дизельных масел особенно важна влагостойкость присадок и малая эмульгируемость с водой; для энергосберегающих - антифрикционность, благоприятные реологические свойства. Классификация моторных масел Классификация моторных масел согласно ГОСТ 17479.1-85 подразделяет их на классы по вязкости и группы по назначению и уровням эксплуатационных свойств. Ниже приведено описание отечественной классификации моторных масел с учетом Изменения №3 к ГОСТ 17479.1-85, которым увеличено число классов вязкости и изменены их границы, введены новые группы по назначению и уровням эксплуатационных свойств, а также некоторые наименования. Например, по всему тексту стандарта масла для карбюраторных двигателей называются более точным термином - маслами для бензиновых двигателей. ГОСТ 17479.1-85 предусмотрено обозначение моторных масел, сообщающее потребителю основную информацию об их свойствах и области применения. Стандартная марка включает следующие знаки: букву М (моторное), цифру или дробь, указывающую класс или классы вязкости (последнее для всесезонных масел), одну или две из первых шести букв алфавита, обозначающих уровень эксплуатационных свойств и область применения данного масла. Универсальные масла обозначают буквой без индекса или двумя разными буквами с разными индексами. Индекс 1 присваивают маслам для бензиновых двигателей, индекс 2 - дизельным маслам.
Классы вязкости моторных масел, установленные ГОСТ 17479.1-85, представлены в таблице, а группы по назначению и эксплуатационным свойствам - в таблице. Примеры маркировки с пояснением значения ее составных частей облегчат пользование данными таблиц. Так, марка М-6З/10В указывает, что это моторное масло всесезонное, универсальное для среднефорсированных дизелей и бензиновых двигателей (группа В); М-4З/8-В2Г1 - моторное масло всесезонное, универсальное для среднефорсированных дизелей (группа В2) и высокофорсированных бензиновых двигателей (группа Г1); М-14Г2(цс) - моторное масло класса вязкости 14, предназначенное для высокофорсированных дизелей без наддува или с умеренным наддувом. В данном случае после основного обозначения в скобках указана дополнительная характеристика области применения ("цс" означает циркуляционное судовое); аналогично М-14Д (цл20) - моторное масло для высокофорсированных дизелей с наддувом, работающих в тяжелых эксплуатационных условиях, (цл20) - применимое в циркуляционных и лубрикаторных смазочных системах и имеющее щелочное число 20 мг КОН/г.
В прежней нормативной документации дополнительные характеристики условий применения и особенностей свойств масел вводились в стандартные обозначения без скобок (М-8Г2к, М-10ДМ, М-16ДР и т.п.), иное назначение масла обозначала группа Е (раньше так обозначали цилиндровые масла для лубрикаторных смазочных систем крейцкопфных дизелей), употреблялись и нестандартные марки (МТ-16п, М-16ИХП-3). Поскольку старые марки содержатся в многочисленных инструкциях по эксплуатации техники, нормативной документации на масла, картах смазки и другой документации, не представляется возможным единовременно исключить все ранее принятые обозначения. В таблице приведены данные о соответствии обозначений марок моторных масел по ГОСТ 17479.1-85 и принятых ранее в нормативных документах. Нередко возникает необходимость решения вопросов взаимозаменяемости отечественных и зарубежных моторных масел, например, когда необходимо выбрать отечественное масло для импортной техники или зарубежное масло для экспортируемой отечественной техники. Общепринятой в международном масштабе стала классификация моторных масел по вязкости Американского общества автомобильных инженеров - SAE J300. Уровень эксплуатационных свойств и область применения зарубежные производители моторных масел в большинстве случаев указывают по классификации АРI (Американский институт нефти). ГОСТ 17479.1-85 в справочных приложениях дает примерное соответствие классов вязкости и групп по назначению и эксплуатационным свойствам, изложенным в ГОСТе, классам вязкости по SAE и классам АРI по условиям и областям применения моторных масел. Следует подчеркнуть, что речь идет не об идентичности, а только об ориентировочном соответствии. Данные табл. 2.4 дают возможность, зная стандартную марку отечественного масла, выбрать его зарубежный аналог или, зная характеристики импортного масла по классификациям SAE J300 и АРI, найти его ближайший отечественный аналог. Классы вязкости SAE в большинстве случаев имеют более широкие диапазоны кинематической вязкости при 100 °С, чем классы вязкости по ГОСТ 17479.1-85. По этой причине одному классу SAE могут соответствовать два смежных класса по ГОСТ 17479.1-85. В таком случае предпочтительно указать аналог, имеющий самое близкое фактическое значение вязкости по проспектным данным или нормативной документации на данный продукт.
Классификация АРI подразделяет моторные масла на две категории: "S" (Service) - масла для бензиновых двигателей и "С" (Commerсial) - масла для дизелей. Универсальные масла обозначают классами обеих категорий. Классы в категориях указывают буквы латинского алфавита, стоящие после буквы, обозначающей категорию, например, SF, SH, СС, CD или SF/СС, CG/CD, СF-4/SН для универсальных масел. Моторные масла, относящиеся к одному и тому же классу АРI, но производимые разными фирмами, могут существенно отличаться по составу базовых масел, типам используемых присадок и, следовательно, иметь специфические свойства, удовлетворять предъявляемые требования близко к предельным значениям или иметь запас качества. При выборе аналога по области применения и уровню эксплуатационных свойств обязательно должны быть приняты во внимание все специальные требования к моторному маслу со стороны изготовителя техники (например, ограничения по сульфатной зольности, отсутствие или, напротив, наличие определенного количества цинка, отсутствие в составе масла растворимых модификаторов трения, содержащих молибден и т.п.).Согласно классификациям ГОСТ 17479.1-85 и АРI группу (класс) по уровню эксплуатационных свойств устанавливают только по результатам моторных испытаний масел в специальных одноцилиндровых установках и полноразмерных двигателях. Испытания проводят в стендовых условиях по стандартным методам. Чем выше присваиваемый маслу уровень эксплуатационных свойств, тем "строже" проходные оценки результатов испытаний или жестче условия их проведения. Для контроля стабильности качества серийно выпускаемых моторных масел их классификационные испытания проводят согласно требованиям ГОСТ 17479.1-85 не реже одного раза в два года. В соответствии с изменением №3 к ГОСТ 17479.1-85, введенным с 01.01.2000г. классификационные испытания должны проводиться не два раза в год, а при сертификации моторных масел. При этом определяют моющие, диспергирующие, противоизносные, антикоррозионные, антиокислительные свойства масел и их соответствие указанным в марках классам вязкости. В случаях непринципиальных изменений технологий производства моторных масел обязательно проводят сравнительные квалификационные испытания товарного масла-прототипа и опытного образца, выработанного по измененной технологии. На отечественном рынке имеется широкий ассортимент моторных масел, имеющих обозначение по классам API. Однако большинство из них не проходило соответствующих испытаний и не имеет сертификата, выданного API. Классы API в них установлены, как правило, по аналогии с зарубежными маслами, имеющими в своем составе аналогичный пакет присадок, что не является достаточным признаком, подтверждающим эксплуатационные свойства масел. Класс масла по API может быть подтвержден только сертификатом, выданным API.
Вопрос57: Общие требования, предъявляемые при испытаниях автомобильных двигателей. Аппаратура, применяемая при испытаниях автомобилей, должна отвечать целому ряду требований: прежде всего, быть компактной, не бояться динамических перегрузок, вибрации, большой запыленности воздуха и в то же время обладать достаточной чувствительностью и разрешающей способностью. Требование компактности вызвано отсутствием достаточного места для размещения аппаратуры на сиденье в салоне легкового или кабине грузового автомобилей. Необходимость установки приборов в салоне или кабине диктуется недостаточной виброзащищенность аппаратуры и высоким уровнем колебаний рамы и кузова. При выборе приборов для дорожных испытаний также необходимо учитывать возможность питания их от низковольтных источников тока. Разместив аппаратуру на автомобиле, следует надежно закрепить приборы, исключая их произвольное перемещение. Особое внимание необходимо обратить на закрепление аккумуляторных батарей, используемых в качестве автономных источников питания, когда питание от бортовой сети автомобиля создает различные помехи, вызванные работой электрооборудования. В некоторых случаях помехи могут быть вызваны измерительными приборами, работающими от общего источника тока. Поэтому целесообразно применять специальные меры защиты или для каждого прибора использовать отдельный источник питания. При установке аппаратуры в труднодоступном месте необходим пульт дистанционного управления, с помощью которого можно управлять приборами с рабочего места. Перед началом испытаний требуется рассчитать или предварительными экспериментами определить уровень измеряемых величин и их частоты, по которым выбирают коэффициент усиления, частотный диапазон, скорость записи и другие характеристики аппаратуры. Все эти данные учитывают при подборе и настройке аппаратуры. До начала и после проведения испытаний следует соответственно определить и проверить характеристики всего измерительного комплекса: коэффициент калибровки, амплитудно-частотную характеристику, величину погрешности. |