Главная страница
Навигация по странице:

  • События стадии инициации

  • Последовательность событий стадии элонгации

  • Образование пептидной связи при встраивании четвертой аминокислоты в пептид.Субъединицы рибосомы, большая часть транспортных РНК и матричная РНК не показаны.

  • Реакции стадии терминации

  • Зачем врачу нужна биологическая химия


    Скачать 6.47 Mb.
    НазваниеЗачем врачу нужна биологическая химия
    АнкорLektsii_po_Biokhimii_Timin_Oleg_Alexeevich.docx
    Дата21.12.2017
    Размер6.47 Mb.
    Формат файлаdocx
    Имя файлаLektsii_po_Biokhimii_Timin_Oleg_Alexeevich.docx
    ТипДокументы
    #12377
    страница56 из 139
    1   ...   52   53   54   55   56   57   58   59   ...   139

    Синтез белков обеспечивают рибосомы

    Трансляция (синтез белка)


    Трансляция (англ. translation – перевод) – это биосинтез белка на матрице мРНК.

    После переноса информации с ДНК на матричную РНК начинается синтез белков. Каждая зрелая мРНК несет информацию только об одной полипептидной цепи. Если клетке необходимы другие белки, то необходимо транскрибировать мРНК с иных участков ДНК.

    Биосинтез белков или трансляция происходит на рибосомах, внутриклеточных белоксинтезирующих органеллах, и включает 5 ключевых элементов:

    • матрица – матричная РНК,

    • растущая цепь – полипептид,

    • субстрат для синтеза – 20 протеиногенных аминокислот,

    • источник энергии – ГТФ,

    • рибосомальные белки, рРНК и белковые факторы.

    Выделяют три основных стадии трансляции: инициация, элонгация, терминация.

    Инициация


    Для инициации необходимы мРНК, ГТФ, малая и большая субъединицы рибосомы, три белковых фактора инициации (ИФ-1, ИФ-2, ИФ-3), метионин и тРНК для метионина.

    В начале этой стадии формируются два тройных комплекса: 

    • первый комплекс – мРНК + малая субъединица + ИФ-3,

    • второй комплекс – метионил-тРНК + ИФ-2 + ГТФ.

    После формирования тройные комплексы объединяются с большой субъединицей рибосомы. В этом процессе активно участвуют белковые факторы инициации, источником энергии служит ГТФ. После сборки комплекса инициирующаяметионил-тРНК связывается с первым кодоном АУГ матричной РНК и располагается в П-центре (пептидильный центр) большой субъединицы. А-центр (аминоацильный центр) остается свободным, он будет задействован на стадии элонгации для связывания аминоацил-тРНК.

    стадия инициации
    События стадии инициации

    После присоединения большой субъединицы начинается стадия элонгации.

    Элонгация


    Для этой стадии необходимы все 20 аминокислот, тРНК для всех аминокислот, белковые факторы элонгации, ГТФ. Удлинение цепи происходит со скоростью примерно 20 аминокислот в секунду.

    Элонгация представляет собой циклический процесс. Первый цикл (и следующие циклы) элонгации включает три шага:

    1. Присоединение аминоацил-тРНК (еще  второй)  к кодону мРНК (еще второму),  аминокислота при этом встраивается в А-центр рибосомы. Источником энергии служит ГТФ.

    2. Фермент пептидилтрансферазаосуществляет перенос метионина с метионил-тРНК (в П-центре) на вторую аминоацил-тРНК (в А-центре) с образованием пептидной связи между метионином и второй аминокислотой. При этом уже активированная СООН-группа метионина связывается со свободной NH2-группой второй аминокислоты. Здесь источником энергии служит макроэргическая связь между аминокислотой и тРНК.

    1. Фермент транслоказаперемещает мРНК относительно рибосомы таким образом, что первый кодон АУГ оказывается вне рибосомы, второй кодон (на рисунке ) становится напротив П-центра, напротив А-центра оказывается третий кодон (на рисунке ). Для этих процессов необходима затрата энергии ГТФ. Так как вместе с мРНК перемещаются закрепленные на ней тРНК, то инициирующая первая тРНК выходит из рибосомы, вторая тРНК с дипептидом помещается в П-центр.

    стадия элонгации
    Последовательность событий стадии элонгации

    Второе повторение цикла – начинается с присоединения третьей аминоацил-тРНК к третьему кодону мРНК, аминокислота-3 становится в А-центр. Далее трансферазная реакции повторяется и образуется трипептид, занимающий А?центр, после чего он смещается в П-центр в транслоказной реакции..

    В пустой А-центр входит четвертая аминоацил-тРНК и начинается третий цикл элонгации:

    механизм образования пептидной связи
    Образование пептидной связи при встраивании четвертой аминокислоты в пептид.
    Субъединицы рибосомы, большая часть транспортных РНК и матричная РНК не показаны.

     

    Цикл элонгации (реакции 1,2,3) повторяется столько раз, сколько аминокислот необходимо включить в полипептидную цепь.

    Терминация


    Синтез белка продолжается до тех пор, пока рибосома не достигнет на мРНК особых терминирующих кодонов – стоп-кодонов УАА, УАГ, УГА. Данные триплеты не кодируют ни одной из аминокислот, их также называют нонсенс-кодоны. При вхождении этих кодонов внутрь рибосомы происходит активация белковых факторов терминации, которые последовательно катализируют:

    1. Гидролитическое отщепление полипептида от конечной тРНК.

    2. Отделение от П-центра последней, уже пустой, тРНК.

    3. Диссоциацию рибосомы.

    Источником энергии для завершения трансляции является ГТФ.

    s07-09-stadija-terminacii
    Реакции стадии терминации

    Полирибосомы


    По причине того, что продолжительность жизни матричной РНК невелика, перед клеткой стоит задача использовать ее максимально эффективно, т.е. получить максимальное количество "белковых копий". Для достижения этой цели на каждой мРНК может располагаться не одна, а несколько рибосом, встающих последовательно друг за другом и синтезирующих пептидные цепи. Такие образования называютсяполирибосомы.
    1   ...   52   53   54   55   56   57   58   59   ...   139


    написать администратору сайта