Главная страница
Навигация по странице:

  • Вопрос 2. Строение атома. Модели атома (Морозова, Резерфорда, Бора). Теория Бора. Уравнение Планка. Принцип неопределенности Гейзенберга. Волновая функция.

  • Строение атома по Бору: Н. Бор исходил из планетарной модели атома. Вывод

  • Уравнение Планка: E

  • Вопрос 3. Квантово-механическое представление о строении атома. Квантовые числа и их физический смысл.

  • Вопрос 4. Распределение электронов в многоэлектронном атоме. Принцип Паули. Правило Гунда. Порядок заполнения электронных подуровней.

  • Принцип минимума энергии

  • Принцип Паули

  • Вопрос 5.

  • Периодический закон Д.И. Менделеева

  • Периодическая система элементов состоит из периодов и групп

  • Энергия ионизации атома

  • Электроотрицательность (ЭО)

  • При движении сверху вниз по группам

  • Число электронов, отданное восстановителем равно числу электронов , получаемых окислителем

  • Вопрос 6. Ковалентная связь. Свойства ковалентной связи: прочность, полярность, насыщаемость, направленность, гибридизация, кратность.

  • Особенности КС: Прочность КС

  • ответы на лабораторные по химии. ответы по химии. Задача химии. Значение химии


    Скачать 270 Kb.
    НазваниеЗадача химии. Значение химии
    Анкорответы на лабораторные по химии
    Дата16.01.2022
    Размер270 Kb.
    Формат файлаdoc
    Имя файлаответы по химии.doc
    ТипЗадача
    #332470
    страница1 из 5
      1   2   3   4   5

    Вопрос 1 «Предмет и задача химии. Значение химии»

    Химиянаука о строении, свойствах веществ, их превращениях и сопровождающих явлениях.Перед современной химией сто­ят три главные задачи. Во-первых, основополагающим направлением развития химии является исследование строения вещества, развитие теории строения и свойств молекул и материалов. Важно установление связи между строением и разнообразными свойствами веществ и на этой основе построение теорий реакци­онной способности вещества, кинетики и механизма химических реакций и ката­литических явлений. Вторая задача — осуществление направленного синтеза новых веществ с заданными свойствами. Здесь также важно найти новые реакции и катализаторы для более эффективного осуществления синтеза уже известных и имеющих промышленное значение соединений. В-третьих — анализ. Эта традиционная задача химии приобрела особое значе­ние. Оно связано как с увеличением числа химических объектов и изучаемых свойств, так и с необходимостью определения и уменьшения последствий воз­действия человека на природу.

    Современная химия достигла такого уровня развития, что существует це­лый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических свя­зей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством хи­мических связей углерода с углеродом и другими органогенными элементами: водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта «третья» химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами.

    Химия является общетеоретической дисциплиной. Она призвана дать студентам современное научное представление о веществе как одном из видов движущейся материи, о путях, механизмах и способах превращения одних веществ в другие. Знание основных химических за­конов, владение техникой химических расчетов, понимание возможностей, пре­доставляемых химией с помощью других специалистов, работающих в отдель­ных и узких ее областях, значительно ускоряют получение нужного результата в различных сферах инженерной и научной деятельности.

    Химическая отрасль — одна из важнейших отраслей промышленности в нашей стране. Производимые ею химические соединения, различные композиции и материалы применяются повсюду: в машиностроении, металлургии, сельском хозяйстве, строительстве, электротехнической и элек­тронной промышленности, связи, транспорте, космической технике, медицине, быту, и др. Главными направлениями развития современной химической промышленности являются: производство новых соединений и материалов и повышение эффек­тивности существующих производств.

    Вопрос 2. Строение атома. Модели атома (Морозова, Резерфорда, Бора). Теория Бора. Уравнение Планка. Принцип неопределенности Гейзенберга. Волновая функция.

    Все вещества состоят из атомов. Атомы бывают различные. Атомы каждого вида одинаковы между собой, но они отличаются от атомов любого другого вида. Атом система взаимодействующих элементарных частиц, состоящая из ядра и электронов. Тип атома определяется составом его ядра. Ядро состоит из протонов и нейтронов, вместе называемых нуклонами. Элемент совокуп­ность атомов с одинаковым зарядом ядра, т. е. числом протонов. Атомы эле­мента могут иметь различные числа нейтронов в составе ядра, а следовательно, и массу. Такие атомы, относящиеся к одному элементу, называются изотопами. Каждый известный элемент имеет свое обозначение. Так водород обозначает­ся как Н, углерод — С. Атом — наименьшая частица элемента, обладающая его химическими свойствами.

    При химическом взаимодействии атомов образуются молекулы. Молекулы
    бывают одноатомные (молекулы гелия Не), двухатомные (азота N2), многоатомные (воды Н2О,) и полимерные (содержащие до сотен тысяч и более атомов — молекулы металлов в компакт­ном состоянии, белков, кварца). При этом атомы могут соединяться друг с дру­гом не только в различных соотношениях, но и различным образом. Поэтому при сравнительно небольшом числе химических элементов число различных веществ очень велико. Состав и строение молекул определяют состояние вещества при выбранных условиях и его свойства. Например, диоксид углерода СО2
    при обычных условиях — газ, взаимодействующий с водой. При хими­ческих явлениях молекулы разрушаются, но атомы сохраняются. Во многих химических процессах атомы и молекулы могут переходить в заряженное состояние с образованием ионов — частиц, несущих избыточный положительный или отрицательный заряды.

    Модель атома.

    1. Первая модель М.П. Морозова была разработана в 1960 г. – атом некий кристалл в узлах находятся электроны, в середине сосредоточен «+» заряд.

    2. Э. Резерфорд в опытах по рассеянию а-частиц было показано, что почти вся масса атома сосредоточена в очень малом объеме — положительно заряженном ядре. Согласно мо­дели Резерфорда, вокруг ядра на относительно большом рас­стоянии непрерывно движутся электроны, причем их число тако­во, что в целом атом электрически нейтрален. Однако планетарная модель Резерфор­да противоречила факту, устойчивого существования атомов. В результате ускоренного движения электрона расходуется энергия его электростатического взаимодействия с ядром и согласно расчетам через 108 с электрон должен упасть на ядро.

    3. Строение атома по Бору:

    Н. Бор исходил из планетарной модели атома. Вывод: энергия электронов в атоме не может меняться непрерывно, а изменяется скачками, т.е. дискретно.

    Постулаты Бора:

    1. ℮ может вращаться вокруг ядра не по любым, а только по конкретным круговым орбитам. Эти орбиты получили название стационарных.

    2. двигаясь по стационарной орбите, ℮ не излучает электромагнитной энергии.

    3. излучение происходит при скачкообразном переходе электрона с одной стационарной орбиты на другую. При этом испускается или поглощается квант электромагнитного излучения, энергия которого равна, разности энергии атома в конечном и исходном состояниях. Т.е. энергия электрона, вращающегося вокруг ядра, зависит от радиуса орбиты.

    Уравнение Планка: E=

    Принцип неопределенности Гейзенберга. Предположим что невозможно определить траекторию и скорость электрона, т.е. ∆р*∆х≥h/2π соотн. неопределенности Гейзенберга, где ∆р – неопределенная величина импульса, ∆х – неопределенное положение частицы в пространстве. Невозможно в любой момент времени определить и положение ℮ в пространстве и импульс, т.е. скорость движения ℮. Движение ℮ носит волновой характер, и наши знания о положении ℮ носит статистический характер.

    Для описания свойств электрона используют волновую функцию, которую обозначают буквой ψ (пси). Квадрат ее модуля |ψ|2, вычисленный для определенного момента времени и определенной точки пространства, пропорционален вероятности обнаружить частицу в этой точке в указанное время. Величину |ψ|2 называют плотностью вероятности. Наглядное представление о распределении электронной плотности атома дает функция радиального распределения.

    Вопрос 3. Квантово-механическое представление о строении атома. Квантовые числа и их физический смысл.

    Распределение ℮ по энергии и в пространстве атома водорода определяется волновой функцией, зависящей от сферических координат ℮ и от трех параметров (n, e, me), принимающих целочисленные значения.

    1. Главное квинтовое число – n, характеризует энергию орбитали и ее размер n=1,2,…∞, n=Nпериода.

    2. Орбитальное гл. кв. число (побочное) – l, характеризует форму орбитали s,p,d,f. l=0, до n-1

    3. Магнитное главное кв. число – m, характ. направленность орбитали в пространстве: m=-℮..,0,..+

    4. Спиновое гл. кв. число s, характ. вращение ℮ вокруг своей оси: s=+½ и s= ½.

    Вопрос 4. Распределение электронов в многоэлектронном атоме. Принцип Паули. Правило Гунда. Порядок заполнения электронных подуровней.

    Распределения электронов в многоэлектронных атомах основано на трех положениях: принципе минимума энергии, принципе В. Паули, и правиле В. Хунда

    Принцип минимума энергии: электрон в первую очередь располагается в пределах электронной подоболочки с наинизшей энергией.

    Правила Клечковского:

    а) электрон обладает наинизшей энергией на той электронной подоболочке, где сумма квантовых чисел n и l минимальна.

    б) электрон обладает наинизшей энергией на подоболочке с наименьшим значением главного квантового числа.

    Принцип Паули: в атоме не может быть двух ℮, характ. одинаковым набором всех квант. чисел.

    Правило Хунда: minэнергия атома соответствует такое распределение ℮ по атомным орбиталям данного подуровня, при котором абсолютное значение суммарного спина атома max.

    Состояния атома с меньшим, по сравнению с максимальным, значениями суммарного спина электронов будут энергетически менее выгодными и, в отличие от первого, называемого основным, будут относится к возбужденным состояниям.

    Вопрос 5. Периодический закон и Периодическая система Д.И. Менделеева. s-,p-, d-, f-элементы. Периодичность изменения свойств элементов: относительная электроотрицательность, потенциал ионизации, сродство к электрону, радиус атома, восстановительная и окислительная способность элементов.

    Периодический закон Д.И. Менделеева:

    строение и свойства элементов и их соединений находятся в периодической зависимости от заряда ядра и определяются периодически повторяющимися однотипными электронным конфигурациями их атомов.

    Периодическая система элементов состоит из периодов и групп

    Период – это совокупность элементов с одинаковым значением энергии.

    Группа – вертикальный ряд элементов имеющих одинаковое число электронов на внешнем эл. слое.

    Заряд ядра равен порядковому номеру элемента в системе. Элементы образуют 7 периодов. В периодах свойства элементов закономерно изменяются при переходе от щелочных металлов к благородным газам. Вертикальные столбцы это группы элементов сходных по свойствам. Внутри групп свойства элементов также изменяются закономерно (например, возрастает химическая активность) Элементы с 58 по 71, а также 90 – 103 образуют 2 семейства – лантаноиды и актиноиды. Периодичность свойств элементов обусловлено периодическим повторением конфигурации внешних электронных оболочек атомов. С положением элементов в системе связаны его химические и многие физические свойства.

    Первые три периода называются малыми или короткими все остальные большие или длинные. В зависимости от того, как представлены в периодической таблице длинные периоды, различаются короткопериодные и длиннопериодные варианты таблицы. В последнем варианте длинный период вытянут полностью слева направо и четвертая, пятая строки таблицы содержат последовательность из 18 элементов. Шестой период и теоретически седьмой содержат по 32 элемента.

    Длина периода зависит от числа электронов на внешних электронных оболочках атомов элементов. В короткопериодном варианте периодической таблицы длинные периоды разделяют на две части и элементы размешают в те же группы что и элементы коротких периодов, причем так чтобы в каждой клетке было по 2 элемента. Группу элементов делят на главную и побочную при этом под каждым элементом находится по возможности элементы с похожими свойствами, например такие элементы как водород, литий, натрий, калий составляют главную подгруппу элементов, а входящие в медь, серебро, золото образуют побочную подгруппу.

    Экспериментальное изучение электронных конфигураций атомов и положения атомов в периодической системе позволяет сделать ряд выводов, придающих физический смысл номеру периода, группы и типу подгруппы и существенно облегчающих запись электронных конфигураций атомов. Среди таких выводов:

    1. Номер периода совпадает с

    • количеством заполняющихся электронных оболочек атома;

    • главным квантовым числом внешней, заполняющейся электронами, обо­лочки;

    • главным квантовым числом, заполняющейся s-подоболочки;

    • главным квантовым числом, заполняющейся р-подоболочки;

    • главным квантовым числом +1 заполняющейся d-подоболочки (в больших периодах);

    • главным квантовым числом +2 заполняющейся f-подоболочки (в 6-м и 7-м периодах).

    1. Каждый период начинается двумя s-элементами и, кроме 1-го, заканчива­ется шестью р-элементами. В 7-м периоде р-элементов нет, так как период не достроен. В больших периодах между s- и р-элементами размещаются десять d-элементов. В 6-м и 7-м периодах за первыми d-элементами (La и Ас) находят­ся 14 f-элементов.

    2. У атомов элементов главных подгрупп на внешней электронной оболочке находится число электронов, численно совпадающее с номером группы.

    3. У большинства атомов элементов побочных подгрупп на внешней оболочке находится 2 электрона, у атомов Cr, Cu, Nb, Mo, Ru, Rh, Ag, Pt, Au — по 1-му электрону, а атом Pd — не имеет электронов на внешней s-подоболочке.

    Энергия ионизации атома – это кол-во энергии, которой необходимо для отрыва ℮ элемента э0 от атома для превращения его в катион (+): э0-℮→э+

    Энергия необходимая для удаления 1 моля электронов от одного моля атомов какого-либо элемента наз. первой энергией ионизации. Характеризует восстановительную способность элементов. Первая энергия определяется электронным строением элементов, и ее изменение имеет периодический характер. Наименьшее значение имеют щелочные элементы, находящиеся в начале периода. Наибольшее – благородные газы, находящиеся в конце периода.

    Сродство к ℮ - это энергия, которая выделяется при присоединении ℮ к нейтральному атому, т.е. при превращении атома в анион (-): э0+℮→э-ср.

    Электроотрицательность (ЭО) – это способность атома притягивать к себе ℮.

    При движении слева направо по периодам:

    1. R атомов ↓;

    2. металличность ↓;

    3. энергия ионизации ↑;

    4. не металличность ↑;

    5. ЭО ↑.

    При движении сверху вниз по группам:

    1. R атомов ↑;

    2. металличность ↑;

    3. энергия ионизации ↓;

    4. не металличность ↓;

    5. ЭО ↓.

    6. Сродство к ℮ ↑.

    Число электронов, отданное восстановителем равно числу электронов, получаемых окислителем

    Вопрос 6. Ковалентная связь. Свойства ковалентной связи: прочность, полярность, насыщаемость, направленность, гибридизация, кратность.

    Химическая связь между атомами, осуще­ствляемая обобществленными электронами, называется ковалентной связью. Ковалентная связь является универсальным типом химической связи.

    Ковалентная связь существует между атомами как в молеку­лах, так и в кристаллах. Она возникает как между одинаковыми атомами, так и между разными атомами. Характерными особенностями ковалентной связи явля­ются её насыщаемость и направленность. Насыщаемость ковалентных связей обусловлена тем, что в химическом взаимодействии участвуют электроны только внешних энергетических уровней, т. е. ограниченное число электронов.

    Электронные облака атомов имеют определенную простран­ственную ориентацию. Соответственно и область перекрывания электронных облаков находится в определенном направлении по отношению к взаимодействующим атомам. Поэтому ковалентная связь обладает направленностью. Характер распределения электронной плотности при образовании связи зависит от вида взаимодействующих атомов.

    Особенности КС:

    1. Прочность КС – это свойства характер длинной связи (межъядерное пространство) и энергии энергией связи.

    2. Полярность КС. В молекулах, содержащих ядра атомов одного и того же элемента, одна или несколько пар электронов в равной мере принадлежат обоим атомам, каждое ядро атома с одинаковой силой притяги­вает пару связывающих электронов. Такая связь называется неполярной ковалентной связью.

    Если пара электронов, образующих химическую связь, смещена к од­ному из ядер атомов, то связь называют полярной кова­лентной связью.

    1. Насыщаемость КС – это способность атома участвовать только в определенном числе КС, насыщаемость характеризует валентностью атома. Количественные меры валентности явл. число не спаренных электронов у атома в основном и в возбужденном состоянии.

    2. Направленность КС. Наиболее прочные КС образуются в направлении максимального перекрывания атомных орбиталей, т.е. мерой направленности служит валентный угол.

    3. Гибридизация КС – при гибридизации происходит смещение атомных орбиталей, т.е. происходит выравнивание по энергии и по форме. Существует sp, sp2, sp3гибридизация. spформа молекулы линейная (угол 1800), sp2форма молекулы плоская треугольная (угол 1200), sp3 - форма тетраэдрическая (угол 109028).
    4.   1   2   3   4   5


    написать администратору сайта