Теория вероятности и матстатистика. Основные понятия (фильм). 1 Предмет теории вероятностей
Скачать 0.51 Mb.
|
1 1 Предмет теории вероятностей. В процессе всей своей жизни человек часто сталкивается с событиями и явлениями, исход которых заранее не определен. Например, студент не знает, какие именно вопросы задаст экзаменатор, служащий – сколько времени у него займет дорога на работу завтра (через неделю), инвестор – окупятся ли его инвестиции, страховщик – причину и размер выплаты страхового вознаграждения и т. д. Тем не менее, в подобных ситуациях, связанных с неопределенностью, человеку необходимо принимать решение. Теория вероятностей - это математическая дисциплина, изучающая закономерности, происходящие в массовых однородных случайных явлениях и процессах. С возникновением теории вероятностей наука получила мощный аппарат исследования случайных явлений и процессов, до этого исследовались лишь детерминированные явления и опыты, в которых первоначальные условия однозначно позволяли определить исход. Между тем, случайные явления присутствуют во многих областях науки (биологии, генетике, агрономии, экономике, демографии, технике и т.д.), когда заранее невозможно предсказать результат опыта. Исторически зарождение и развитие теории вероятностей связано с азартными играми, в которых требовалось обосновать то или иное решение. Вероятность события – это число, всегда связанное с каким-либо пространством элементарных событий, природа которого не имеет значения. Понятие вероятности обычно строится на интуитивных соображениях (например, вероятность появления герба при подбрасывании симметричной монеты очевидно равна 1/2) и связано с понятием статистической устойчивости относительной частоты события при большом числе опытов. При подбрасывании монеты достаточно большое число раз относительная частота появлений герба будет колебаться около 0,5, следовательно, можно говорить, что вероятность появления герба равна 0,5. Наличие устойчивости относительной частоты появления события позволяет судить о вероятности, как об объективной характеристике события в данном опыте, имеющей вполне определенное значение, независимо от того, будут проводиться опыты или нет. Целью современной теории вероятностей является выявление общих закономерностей и зависимостей, а также описание физических явлений с помощью абстрактных моделей. Математическая статистика - это раздел математики, в котором изучаются математические методы систематизации, обработки, анализа и представления статистических данных для научных и практических выводов. Математическая статистика использует математический аппарат и выводы теории вероятностей. Связующим звеном между теорией вероятностей и математической статистикой является закон больших чисел и так называемые предельные теоремы 2 2 Алгебра событий. Одним из основных понятий теории вероятностей является опыт. Под опытом понимается выполнение комплекса условий, в результате которого происходят или не происходят определенные события (факты). Событие — это возможный результат опыта или испытания. Простейшие неразложимые результаты опыта называются элементарными событиями (i), а вся совокупность элементарных событий называется пространством элементарных событий ={i}. С каждым опытом связано свое пространство элементарных событий . Любое конечное или счетное подмножество называется событием. Различают три типа событий: достоверные (), случайные, невозможные (Ø). События обычно обозначают первыми прописными буквами латинского алфавита: А, В, С, …. Событие называется достоверным, если в результате опыта оно обязательно произойдет. Событие называется невозможным, если оно не может произойти в данном опыте. Случайным называется событие, которое в данном опыте может произойти, а может и не произойти. События А и В несовместны, если в результате одного опыта они не могут происходить одновременно, в противном случае - совместны. Например, при одном подбрасывании монеты не могут одновременно появиться герб и решетка. Элементы последовательности событий А1, А2, …, Аn попарно несовместны, если любые два из них несовместны. Например, при подбрасывании игральной кости никакие два элементарных исхода (появление цифр 1, 2, 3, 4, 5, 6) не могут произойти одновременно. Несколько событий равновозможные, если ни одно из них не является более возможным, чем другие. Несколько событий называются единственно возможными, если в результате испытания произойдет хотя бы одно из них. Исходя из лекции И.П. Михайлова: 3 4 5 6 7 8 9 |