Главная страница

Реферат. Цель проанализировать Современные открытия в области математики


Скачать 78.57 Kb.
НазваниеЦель проанализировать Современные открытия в области математики
Дата28.12.2021
Размер78.57 Kb.
Формат файлаdocx
Имя файлаРеферат.docx
ТипРешение
#320681

ВВЕДЕНИЕ

В отличие от других наук, математика, как представительница чистого разума, развивается поступательно, вне зависимости от увлечений человечества на том или ином историческом промежутке времени, от революций и катаклизмов общества. Иногда математики любят ставить проблемные вопросы, на решение которых уходят столетия.

Основой развития математики в XX веке стал сформировавшийся математический язык цифр, символов, операций, геометрических образов, структур, соотношений для формально–логического описания и исследования действительности. Язык математики – это искусственный язык, со всеми его недостатками и достоинствами. Он часто точнее, адекватнее и глубже отображает реальность, чем это делается в рамках других наук. Чем чаще наука прибегает к языку математики, тем больше она эволюционирует, тем более глубокие связи и отношения она сможет изучить.

Именно, потому что прогресс не стоит на месте и всегда находится человек, который «сомневаться», в современном мире продолжается множество открытий, доказательств, теорем аксиом и т.д. в области математики.

Большинство великих математиков родились в Советском Союзе, хоть сейчас многие из них и не живут в этих странах, и это большое упущение властей. Открытия, которые они делают оказывают большое влияние на все развитие науки в целом.

Цель: проанализировать Современные открытия в области математики.

Задачи:

  1. Провести теоретический анализ литературы по теме исследования.

  2. Рассмотреть современные открытия в области математики.

  3. Охарактеризовать гипотезу Пуанкаре и Перельман, как самое большое открытие в математике XXI века.


1.Современные открытия в области математики

Современные открытия в области математики в первую очередь связаны с именем петербургского математика Григория Перельмана. Он известен своими работами по теории пространств Александрова и тем, что сумел доказать ряд гипотез. 

В 2002 году Григорием Перельманом была впервые опубликована новаторская работа, посвященная решению одного из частных случаев гипотезы геометризации Уильяма Терстона. Из нее следует справедливость известной гипотезы Пуанкаре, которую сформулировал в 1904 году французский математик, физик и философ Анри Пуанкаре. Описанный Перельманом метод изучения потока Риччи назвали теорией Гамильтона–Перельмана [3]. 

В 2006 году Григорий Перельман решил гипотезу Пуанкаре, за что ему было присуждена международная премия «Медаль Филдса», но он от нее отказался. В 2006 году журнал Science назвал доказательство теорем Пуанкаре научным прорывом года. Это первая работа, которая заслужила такое звание. 

В 2007 году британской газетой The Daily Telegraph был опубликован список ста ныне живущих гениев. В нем Григорий Перельман находится на девятом месте. Помимо Перельмана, в этот список вошли всего лишь два россиянина – Гарри Каспаров и Михаил Калашников. 

В 2010 году Математический институт Клэя присудил Перельману премию в размере 1 миллион долларов США за то, что он доказал гипотезу Пуанкаре. Впервые в истории премия была присуждена за решение одной из Проблем тысячелетия [3]. 

В 1900 году на математическом конгрессе в Париже Давид Гильберт предложил список из 23 проблем, которые должны быть решены в 21 столетии. На сегодняшний день разрешена 21 проблема. В 1970 году выпускник матмеха Ю.В. Матиясевич завершил решение десятой проблемы Гильберта. 

В начале 21 века в Математическом институте Клэя был составлен аналогичный список из семи важнейших задач математики на 21 столетие. При этом за решение каждой из них объявлялся приз размером 1 миллион долларов. Еще в 1904 году одну из важнейших задач сформулировал Пуанкаре: все трехмерные поверхности в четырехмерном пространстве, гомотопически эквивалентные сфере, гомеоморфны ей. Если говорить простыми словами, то гипотезу Пуанкаре можно изложить так: если трехмерная поверхность в чем–то имеет сходство со сферой, то ее можно расправить в сферу. Утверждение Пуанкаре называют формулой Вселенной из–за его важности в изучении сложных физических процессов в теории мироздания и из–за того, что оно дает ответ на вопрос о форме Вселенной. Данное открытие играет свою роль и в развитии нанотехнологий [1]. 

Что касается других современных открытий в области математики, за прошедшие годы был решен ряд важнейших классических проблем, которые сохраняют актуальность в современной науке, намечены и развиты новые пути исследований, поставлены и решены серьезные прикладные задачи. Все это стало возможным благодаря инновационным технологиям.

Например, в Математическом институте им. В.А. Стеклова академик А.А. Болибрух решил классическую проблему сведения произвольной неприводимой системы линейных дифференциальных уравнений с рациональными коэффициентами к стандартной биркгофовой форме при помощи аналитических преобразований. 

В Санкт–Петербургском отделении того же института академик Л.Д. Фадеев разработал новый метод исследований квантовых интегрируемых моделей, в основе которого лежит постулирование дискретности переменных пространства–времени при сохранении точной интегрируемости моделей. Из единой дискретной модели как предельные случаи могут быть получены основные модели квантовых интегрируемых систем с непрерывным пространством–временем. 

В Институте математики им. С.А. Соболева СО РАН академик Ю.Л. Ершов сумел построить принципиально новое расширение поля рациональных чисел при помощи разрабатываемой им в течение нескольких лет теории локальных полей. 

Коллектив ученых Института вычислительной математики РАН построил модели, основанные на применении сопряженных уравнений гидротермодинамики для анализа глобальных изменений окружающей среды и, прежде всего, климата [5]. 

В 2000 году Межведомственный суперкомпьютерный центр совместно с НИИ «Квант», Институтом прикладной математики им. М.В. Келдыша РАН и другими организациями создал и ввел в эксплуатацию многопроцессорную вычислительную систему МВС–1000/М с пиковой производительностью 1 триллион операций в секунду. Данная система представляет собой самый мощный суперкомпьютер в сфере науки и образования страны и является головным образцом нового поколения отечественной линии систем массового параллелизма. 

Современные открытия в области математики в первую очередь связаны с именем петербургского математика Григория Перельмана. Он известен своими работами по теории пространств Александрова и тем, что сумел доказать ряд гипотез. 

В 2002 году Григорием Перельманом была впервые опубликована новаторская работа, посвященная решению одного из частных случаев гипотезы геометризации Уильяма Терстона. Из нее следует справедливость известной гипотезы Пуанкаре, которую сформулировал в 1904 году французский математик, физик и философ Анри Пуанкаре. Описанный Перельманом метод изучения потока Риччи назвали теорией Гамильтона-Перельмана. 

В 2006 году Григорий Перельман решил гипотезу Пуанкаре, за что ему было присуждена международная премия «Медаль Филдса», но он от нее отказался. В 2006 году журнал Science назвал доказательство теорем Пуанкаре научным прорывом года. Это первая работа, которая заслужила такое звание. 

В 2007 году британской газетой The Daily Telegraph был опубликован список ста ныне живущих гениев. В нем Григорий Перельман находится на девятом месте. Помимо Перельмана, в этот список вошли всего лишь два россиянина – Гарри Каспаров и Михаил Калашников. 

В 2010 году Математический институт Клэя присудил Перельману премию в размере 1 миллион долларов США за то, что он доказал гипотезу Пуанкаре. Впервые в истории премия была присуждена за решение одной из Проблем тысячелетия. 

В 1900 году на математическом конгрессе в Париже Давид Гильберт предложил список из 23 проблем, которые должны быть решены в 21 столетии. На сегодняшний день разрешена 21 проблема. В 1970 году выпускник матмеха Ю.В. Матиясевич завершил решение десятой проблемы Гильберта. 

В начале 21 века в Математическом институте Клэя был составлен аналогичный список из семи важнейших задач математики на 21 столетие. При этом за решение каждой из них объявлялся приз размером 1 миллион долларов. Еще в 1904 году одну из важнейших задач сформулировал Пуанкаре: все трехмерные поверхности в четырехмерном пространстве, гомотопически эквивалентные сфере, гомеоморфны ей. Если говорить простыми словами, то гипотезу Пуанкаре можно изложить так: если трехмерная поверхность в чем-то имеет сходство со сферой, то ее можно расправить в сферу. Утверждение Пуанкаре называют формулой Вселенной из-за его важности в изучении сложных физических процессов в теории мироздания и из-за того, что оно дает ответ на вопрос о форме Вселенной. Данное открытие играет свою роль и в развитии нанотехнологий. 

Что касается других современных открытий в области математики, за прошедшие годы был решен ряд важнейших классических проблем, которые сохраняют актуальность в современной науке, намечены и развиты новые пути исследований, поставлены и решены серьезные прикладные задачи. Все это стало возможным благодаря инновационным технологиям.

Например, в Математическом институте им. В.А. Стеклова академик А.А. Болибрух решил классическую проблему сведения произвольной неприводимой системы линейных дифференциальных уравнений с рациональными коэффициентами к стандартной биркгофовой форме при помощи аналитических преобразований. 

В Санкт-Петербургском отделении того же института академик Л.Д. Фадеев разработал новый метод исследований квантовых интегрируемых моделей, в основе которого лежит постулирование дискретности переменных пространства-времени при сохранении точной интегрируемости моделей. Из единой дискретной модели как предельные случаи могут быть получены основные модели квантовых интегрируемых систем с непрерывным пространством-временем. 

В Институте математики им. С.А. Соболева СО РАН академик Ю.Л. Ершов сумел построить принципиально новое расширение поля рациональных чисел при помощи разрабатываемой им в течение нескольких лет теории локальных полей. 

Коллектив ученых Института вычислительной математики РАН построил модели, основанные на применении сопряженных уравнений гидротермодинамики для анализа глобальных изменений окружающей среды и, прежде всего, климата. 

В 2000 году Межведомственный суперкомпьютерный центр совместно с НИИ "Квант", Институтом прикладной математики им. М.В. Келдыша РАН и другими организациями создал и ввел в эксплуатацию многопроцессорную вычислительную систему МВС-1000/М с пиковой производительностью 1 триллион операций в секунду. Данная система представляет собой самый мощный суперкомпьютер в сфере науки и образования страны и является головным образцом нового поколения отечественной линии систем массового параллелизма. 

Математика является системообразующей наукой, играющей особую роль во всей системе знаний. С уровнем развития математики непосредственно связан уровень развития других наук. Благодаря достижениям в области математики, совершаются открытия в биологии и медицине. Математика является основной производящей силой в обществе, поэтому современные открытия в области математики влияют на судьбу человечества в целом.

2.Гипотеза Пуанкаре и Перельман – самое большое открытие в математике XXI века

Гипотеза Пуанкаре – доказанная математическая гипотеза о том, что всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере. Сформулированная в 1904 году математиком Анри Пуанкаре гипотеза была доказана в серии статей 2002–2003 годов Григорием Перельманом. После подтверждения доказательства математическим сообществом в 2006 году, гипотеза Пуанкаре стала первой и единственной на данный момент (2018 год) решённой задачей тысячелетия.

Гипотеза звучит так: всякое односвязное компактное трехмерное многообразие без края гомеоморфно трехмерной сфере. Односвязное, то есть такое, любую замкнутую линию в котором можно стянуть в одну точку (условно – сфера, а не тор, так как на торе это помешает сделать «дырка»). Компактность в топологии является обобщением свойства ограниченности и замкнутости в евклидовых пространствах. В простейшем одномерном случае компактным является, например, отрезок, так как при любом растяжении он останется ограничен некоторыми точками. А вот открытый интервал на прямой можно растянуть до бесконечной прямой, то есть он некомпактен. Трехмерное многообразие без края – это такой геометрический объект, в котором каждая точка имеет открытую окрестность в виде трехмерного шара. Примером его может служить «внутренность» тора, полноторие. Однако если добавить к нему поверхность, сам тор, то у граничных точек не будет окружения со всех сторон, а значит такой объект будет многообразием с краем. Гомеоморфизм устанавливает соответствие между объектами одного класса (условно «сфера» или «тор»). Трехмерная сфера – это поверхность четырехмерного шара. Представить его людям, живущим в трехмерном пространстве, конечно, нелегко [6]. 



1.Иллюстрация гипотезы Пуанкаре для двумерной поверхности («обруч» на сфере)

Чтобы понять гипотезу Пуанкаре, математики предлагают провести мысленный эксперимент, например такой: «Возьмем ракету и привяжем к ней очень длинную веревку и запустим ракету в космос. Ракета с привязанной к хвосту веревкой облетает всю Вселенную и благополучно возвращается на Землю. И теперь у вас в руках оба конца веревки, которую протащили через всю Вселенную. Получилась гигантская петля. Теперь можно вытянуть всю веревку, стягивая петлю. Когда мы вытянем ее всю, что мы сможем сказать о форме Вселенной? Если вы протащите веревку через всю Вселенную и в любом случае сможете стянуть ее до конца, разве вы не признаете, что Вселенная в принципе имеет форму шара?» Таким образом мы бы доказали, что Вселенная представляет собой односвязное многообразие, то есть ее можно стянуть в точку, а, следовательно, и ее появление даже из бесконечно малого «зародыша» не противоречит топологии. Однако если это не удастся, то получается, что Вселенная обладает более сложной топологией, как минимум не проще, чем у тора. Так доказательство гипотезы приобретает мировоззренческое значение.

Человек не может взглянуть на Вселенную со стороны, однако Пуанкаре предположил, что можно математически доказать принадлежность формы Вселенной к тому или иному классу, что и предполагает гипотеза. Первые два доказательства – самого Пуанкаре и человека, обратившего внимание математиков на гипотезу, Джона Уайтхеда, – быстро были опровергнуты самими авторами. Однако интерес к гипотезе нарастал: доказать ее пытались лучшие умы, но безуспешно. Иногда, как в случае математика греческого происхождения Христоса Папакириакопулоса, стремление найти доказательство приобретало характер одержимости, но не приводило к значительным подвижкам. Другому математику, американцу Стивену Смейлу, удалось доказать гипотезу, но только для пространства с большим, чем четыре, числом измерений. Еще один американец, Майкл Фридман, доказал гипотезу для четырехмерного пространства, за что получил медаль Филдса. Однако использовать эти достижения для трехмерного пространства было невозможно [6]. 

Найти доказательство гипотезы удалось лишь через 98 лет после ее создания российскому математику Григорию Перельману. Он опубликовал в электронном архиве научных статей и препринтов три статьи, по сути, содержащие это доказательство. По сути – потому что обоснованные в них положения не являются доказательством гипотезы Пуанкаре, но снимают основные проблемы, стоявшие перед математиками. Перельман сделал основную часть работы, оставив приведение доказательства к законченному виду своим коллегам. На это ушло несколько лет: задача осложнялась тем, что в работе использовались не привычные топологам методы, а принципы и понятия дифференциальной геометрии и физики.

Так как заявления о том, что доказательство найдено, звучали уже не раз, неудивительно, что поначалу и к статьям Перельмана отнеслись скептически. Его приглашали в Принстон и другие ведущие университеты с циклом лекций, раскрывающих смысл доказательства. И лишь в 2006 году было вынесено решение – доказательство Перельмана верно, а гипотезу Пуанкаре следуют считать доказанной. За это Перельману присудили премию Филдса, однако принять ее он отказался [6]. 

3.10 крупнейших математических достижений последних лет

В последнее время я работаю над своей книгой «Математика 1001», делаю дополнения для следующей редакции, которая будет издана за рубежом. Поэтому я отслеживаю математические достижения, случившиеся примерно с 2009 года. И я решил представить вам десятку самых важных событий по этой теме с того времени, в порядке субъективного увеличения важности.

10. Синъити Мотидзуки заявил о доказательстве им abc-гипотезы. Событие попало в конец списка, поскольку до сих пор его доказательство не поддержано большим кругом математиков. Иначе оно занимало бы первое место. А пока, к разочарованию заинтересованных сторон, оно находится в лимбе.

9. Тернарная проблема Гольдбаха. «Начиная с 7, любое нечётное число является суммой трёх простых». Ещё с 1937 года это утверждение верно для достаточно больших нечётных чисел, но в 2013 году перуанский математик Харальд Гельфготт проверил это утверждение на компьютере для чисел вплоть до 1030. Независимо от него это сделал и Дэвид Плат.

8. Вьетнамский математик Нго Бао Тяу доказательством фундаментальной леммы, составляющей часть программы Ленглендса. Ужасно техническое, но очень важное событие программы.

7. 17 подсказок судоку. В 2012 году Макгуайр, Тьюгеман и Чиварио доказали, что минимальное количество подсказок, уникальным образом идентифицирующих задачу в Судоку, равно 17. Хотя и не каждый набор из 17 подсказок приводит к уникальному решению, теорема говорит, что нельзя построить допустимую задачу только на 16-и подсказках.

6. Гомотопическая теория типов / аксиома унивалентности. Новый подход к основам математики под руководством Владимира Воеводского привлекает пристальное внимание. Кроме математического интереса, она обещает так модифицировать язык высшей математики, чтобы сделать его более пригодным для компьютеризированной обработки.

5. Нетриангулируемые многообразия. На шестом месте списка – удивительное открытие Киприана Манолеску [Ciprian Manolescu] по поводу нетриангулируемых многообразий в измерениях от 5 и выше.

4. Мозаика Соколара-Тейлора. Известна мозаика Пенроуза – набор плиток, которыми можно замостить плоскость, но при этом только апериодически. Много лет существовал вопрос – возможно ли сделать это при помощи только одной плитки. Джоан Тейлор и Джошуа Соколар обнаружили такую плитку.

3. Окончание проекта «Флайспек». В 1998 году Томас Хейлс объявил о получении доказательства гипотезы Кеплера по поводу наиболее эффективного способа упаковки пушечных ядер. К сожалению, его доказательство было слишком длинным и включало большое количество вычислительных вставок, в связи с чем проверявшие его люди не смогли завершить проверку. Поэтому Хейлс с командой взялись за это самостоятельно, призвав на помощь вспомогательные компьютерные программы Isabelle и HOL Light. Результат работы стал значимой вехой не только в дискретной геометрии, но и в системах автоматического получения доказательств.

2. Разбиение чисел. Сколькими способами можно записать положительное целое число в виде суммы меньших чисел? В 2011 году Кен Оно и Ян Брюинье предложили ответ на этот старый вопрос.

1. Интервалы между простыми числами. Неудивительно, что это достижение попало на первое место. Этот замечательный результат получил Чжан Итан в 2013 году. Он доказал, что существует бесконечно много последовательных простых чисел с разностью не более 70 миллионов. Последовавший за этим ажиотаж привёл к тому, что Джеймс Мэйнард и проект Polymath, организованный Теренсом Тао, уменьшили это число до 246.

Где же работа Хейрера по уравнению KPZ (Kardar–Parisi–Zhang)? Что насчёт новых примеров Фридмана о неполноте? Что я могу сказать – мы тут просто развлекаемся. Если вы считаете, что я неправ – составьте свой собственный лист.

В качестве бонуса – прогресс в вычислительных доказательствах.

  • Обобщённая непрерывная дробь для числа π подсчитана до 15 миллиардов первых членов.

  • Десятичное представление числа π подсчитано до 13,3 триллионов цифр

  • В поисках совершенного кубоида (целочисленный кирпич) — это прямоугольный параллелепипед, у которого все семь основных величин (три ребра, три лицевых диагонали и пространственная диагональ) являются целыми числами. Пока ясно, что если он и существует, то длина одной из его сторон будет не меньше, чем 3 триллиона.

  • Проблема Гольдбаха (утверждение о том, что любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел) проверена вплоть до числа 4 * 1018.

  • Наибольшая известная пара простых чисел-близнецов – числа с обеих сторон числа 3756801695685 × 2666669.

  • Наибольшее из известных простых чисел и 48-е из известных чисел Мерсенна – 257885161-1.

  • В энциклопедии центров треугольников уже 7719 записей.

  • Длиннейшая из известных оптимальных линеек Голомба теперь имеет порядок 27: (0, 3, 15, 41, 66, 95, 97, 106, 142, 152, 220, 221, 225, 242, 295, 330, 338, 354, 382, 388, 402, 415, 486, 504, 523, 546, 553)

  • Самое впечатляющее достижение в факторизации целых чисел (разложение на простые множители) при помощи классических компьютеров – число из 232 цифр RSA-768:

    1230186684530117755130494958384962720772853569595334792197322452 1517264005072636575187452021997864693899564749427740638459251925 5732630345373154826850791702612214291346167042921431160222124047 9274737794080665351419597459856902143413

    разложенное в два простых числа из 116 цифр:

    3347807169895689878604416984821269081770479498371376856891243138 8982883793878002287614711652531743087737814467999489

    и

    3674604366679959042824463379962795263227915816434308764267603228 3815739666511279233373417143396810270092798736308917

  • А при помощи квантового компьютера — пока только 56153 = 233 * 241

  • Гипотеза Коллатца проверена для чисел вплоть до 2 * 1021


ЗАКЛЮЧЕНИЕ

Математика – уникальная наука. Она способствует выработке адекватногопредставления и понимания знания. «Ни одно человеческое исследование не может называться истинной наукой, если оно не прошло через математическиедоказательства» – писал Леонардо да Винчи.

В настоящее время исследования ученых убедительно показали, что возможности людей, которых обычно называют талантливыми, гениальными – не аномалия, а норма. Задача заключается лишь в том, чтобы раскрепостить мышление человека, повысить коэффициент его полезного действия, наконец, использовать те богатейшие возможности, которые дала ему природа, и о существовании которых многие подчас и не подозревают. Поэтому особо остро в последние годы стал вопрос о формировании общих приемов познавательной деятельности.

Таким образом, математика является системообразующей наукой, играющей особую роль во всей системе знаний. С уровнем развития математики непосредственно связан уровень развития других наук. Благодаря достижениям в области математики, совершаются открытия в биологии и медицине. Математика является основной производящей силой в обществе, поэтому современные открытия в области математики влияют на судьбу человечества в целом.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. Гнеденко, Б.В. Математика и математическое образование в современном мире / Б.В. Гнеденко. – М., Просвещение, 2015. – 177 с.

  2. Колмогоров, А.Н. Математика в ее историческом развитии / А.Н. Колмогоров. – М.: Наука, 2015. – 325 с.

  3. Рыбников, К.А. Возникновение и развитие математической науки / К.А. Рыбников. – М.: Просвещение, 2017. – 160. –25 с.

  4. Стройк, Д.Я. Краткий очерк истории математики / Д.Я. Стройк. – М.: Наука, 2014. – 328 c.

  5. Стюарт, И. Величайшие математические задачи / И. Стюард. – М.: Альпина нон–фикшн, 2015. – 460 с.

  6. Тихомиров, В.М. Великие математики прошлого и их великие теоремы / В.М. Тихомиров. – СПб: Питер, 2016. – 723 c.

  7. Фор, Р. Современная математика / Р. Фор, А. Кофман, М. Дени–Папен. – М., Мир, 2016. – 311 с.

  8. История математики / под ред. А.П. Юшкевича. Т. 1–3. – М., Наука, 2007. – 512 с.





написать администратору сайта