ДЗ8: «НЕКОТОРЫЕ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН»
Найти среднее число лотерейных билетов, на которые выпадут выигрыши, если приобретено 20 билетов, а вероятность выигрыша одного билета равна 0,1. Найти дисперсию числа успехов в данном опыте.
Проверяется партия из 10000 изделий. Вероятность того, что изделие окажется бракованным, равна 0,002. Найти математическое ожидание и дисперсию числа бракованных изделий этой партии. Найти вероятность того, что в партии есть хотя бы одно бракованное изделие.
Производится стрельба по цели до первого попадания. Вероятность попадания при каждом выстреле равна 0,2. Найти математическое ожидание и дисперсию числа произведенных выстрелов, считая, что:
А) стрелять можно неограниченное число раз;
Б) в наличии есть всего 5 патронов.
Игральная кость подбрасывается до первого появления пяти очков. Какова вероятность того, что первое выпадение пятерки произойдет при пятом подбрасывании игральной кости?
Некто ожидает телефонный звонок между 19:00 и 20:00. Время ожидания звонка есть непрерывная сл.в. , имеющая равномерное распределение на отрезке . Найти вероятность того, что звонок поступит в промежутке от 19 ч. 22 мин. до 19 ч. 46 мин.
Про сл.в. известно, что она равномерно распределена на отрезке . Найти:
А) ; Б) и ; В) .
Сл.в. распределена по показательному закону с параметром . Найти плотность и функцию распределения вероятностей (), , а также вероятность попаданий значений сл.в. в интервал .
Время выхода из строя радиостанции подчинено показательному закону распределения с плотностью
.
Найти: функцию распределения , математическое ожидание и дисперсию сл.в. , вероятность того, что радиостанция сохранит работоспособность от 1 до 5 часов работы.
Определить закон распределения сл.в. , если ее плотность вероятности имеет вид
.
Найти:
А) ; Б) ; В) значение коэффициента ; Г) ; Д) ,
Е) вероятность того, что эта сл.в. три раза из пяти примет значение, попадающее в интервал .
Случайные ошибки измерения детали подчинены нормальному закону с параметром мм. Найти вероятность того, что измерение детали произведено с ошибкой, не превосходящей по модулю 25 мм.
Рост взрослых мужчин является случайной величиной , распределенной по нормальному закону: . Найти: плотность вероятности, функцию распределения этой случайной величины; вероятность того, что ни один из 3 наудачу выбранных мужчин не будет иметь рост менее 180 см.
|