Реферат. Реферат Система охлаждения автомобиля Содержание Введение. Развитие автомобилестроения Система охлаждения
Скачать 486.96 Kb.
|
Реферат: Система охлаждения автомобиля Содержание Введение. Развитие автомобилестроения 2. Система охлаждения 2.1 Виды систем охлаждения и принцип их работы 2.2 Устройство и работа приборов жидкостной системы охлаждения 3. Проверка уровня и плотности жидкости в системе охлаждения 3.1 Заправка системы охлаждения жидкостью 3.2 Регулировка натяжения ремня привода насоса 3.3 Насос охлаждающей жидкости. Разборка 3.4 Термостат 3.5 Радиатор. Снятие с автомобиля 4. Основные неисправности и техническое обслуживание системы охлаждения и смазочной системы 4.1 Основные неисправности системы охлаждения 4.2 Техническое обслуживание. 4.3 Основные неисправности смазочной системы 5. Охлаждающие жидкости. 6. Безопасные приемы труда при техническом обслуживании двигателей 7. Литература 1. Введение Развитие автомобилестроения Автомобильный транспорт занимает одно из ведущих мест среди других видов транспорта. Развитие автомобилестроения в бывшем СССР относится к 1931— 1932 гг., когда вступили в действие реконструированный завод АМО (ныне Акционерное общество АМО-ЗИЛ) и вновь построенный Горьковский автомобильный завод (ГАЗ) — ныне Акционерное общество открытого типа ГАЗ. На них было организовано массовое производство грузовых автомобилей ГАЗ-АА и ЗИС-5. В 1940 г. начал производство малолитражных автомобилей Московский завод имени КИМ (Коммунистического Интернационала Молодежи) — ныне Производственное объединение "Москвич". За годы послевоенных пятилеток вступили в строй Кутаисский (КАЗ), Кременчугский (КрАЗ), Ульяновский (УАЗ) и Минский (МАЗ) автомобильные заводы. Павловский (ПАЗ), Ликинский (ЛиАЗ) и Львовский (ЛАЗ) автобусные заводы, а также другие автомобильные заводы, производящие автомобили-самосвалы и прицепной подвижной состав. С каждым годом растет производство автомобилей. Но одновременно с ростом числа автомобилей увеличивается загрязнение окружающей среды отработавшими газами (ОГ) и существенно возрастает шум, производимый ими. Токсичность отработавших газов, выбрасываемых в атмосферу при работе карбюраторных двигателей, обусловливается главным образом содержанием окиси углерода (СО), окислов азота (NO ) и соединениями свинца (РЬ), а дизелей — содержанием окислов азота и сажи (С). Большое значение для уменьшения загрязнения окружающего воздуха отработавшими газами приобретает ежедневное техническое обслуживание подвижного состава автомобильного транспорта, находящегося в эксплуатации, одной из основных задач которого является контроль содержания токсичных веществ в выхлопных газах и доведение его до установленных норм. На автомобильных заводах для снижения токсичности отработавших газов разрабатывают новые модели двигателей и мероприятия по совершенствованию рабочего процесса в двигателе, выбору оптимальных режимов его работы и оптимизации параметров систем питания и зажигания. Значительное уменьшение токсичности ОГ может быть достигнуто также нейтрализацией токсичных веществ при помощи специальных дожигателей отработавших газов, устанавливаемых на автомобилях. Частичным решением этой проблемы является и оснащение автотранспортных средств дизельными двигателями, т. е. дизелизация автомобилей, которая позволяет значительно сократить расход топлива и снизить токсичность отработавших газов. Последнее объясняется тем, что в топливе для дизелей не содержится свинцовых присадок, а выброс вредных компонентов, таких, как углеводород и окись углерода, в несколько раз ниже. Кроме того, дизель на 25—30% экономичнее карбюраторного двигателя, для производства дизельного топлива требуется примерно в 2,5 раза меньше затрат, чем для производства бензина, и срок службы современного дизеля примерно в 1,5 раза выше карбюраторного двигателя. Расширение дизелезации происходит благодаря росту выпуска дизелей на Камском автомобильном заводе (КамАЗ), Ярославском моторном заводе (ЯМЗ) и Кутаисском автомобильном заводе (КАЗ). Кроме того, созданы новые дизели для автомобилей ЗИЛ и ГАЗ и подготовлены производственные мощности для массовой дизелезации современных легковых автомобилей. Одновременно с этим намечается расширение производства автомобилей, работающих на сжатом и сжиженном газах. Перевод автомобилей с жидкого на газообразное топливо экономически оправдан, так как стоимость газового топлива примерно в 2,0—2,5 раза меньше стоимости бензина. По сравнению с карбюраторными двигателями продукты сгорания двигателей, работающих на газе, содержат значительно меньше токсичных веществ. Сильный шум при движении автотранспортных средств возникает в результате выброса в атмосферу отработавших газов и взаимодействия шин с дорогой. Поэтому основными направлениями работ по снижению уровня шума, создаваемого автотранспортными средствами, являются совершенствование конструкции глушителей и шин. В общем балансе шума, создаваемого автомобилями, значительная роль принадлежит несущей системе (кузову или раме), а также элементам подвески. Шум от несущей системы возникает в результате ее вибрации при движении автомобиля и работе двигателя. Для снижения шума внутренние поверхности и основание (пол) кузова легкового автомобиля покрывают вибропоглощающими пастами. Вибрацию несущей системы, возникающую от толчков при движении по неровностям дороги, снижают рессорами или подвесками специальных конструкций, в частности пневматическими. Автомобильные заводы постоянно работают над совершенствованием конструкции грузовых автомобилей и автопоездов, т. е. повышением их эксплуатационных качеств, производительности, приспособленности к использованию прицепов и полуприцепов, уменьшению расходов топлива и смазочных материалов. К основным направлениям развития конструкций легковых автомобилей следует отнести переход на выпуск переднеприводных автомобилей с уменьшенной массой (за счет применения пластмасс, более тонкого проката и проката из сплавов на основе алюминия), снабженных двигателями с рабочим объемом до 1,8 л. Уменьшение массы переднеприводных автомобилей позволяет снизить расход топлива на 10—15%. Совершенствуется и структура автомобильного парка: увеличивается выпуск специализированных автомобилей, прицепов и полуприцепов, автомобилей грузоподъемностью до 2 т и более 8 т, уменьшается выпуск автомобилей грузоподъемностью 2—5 т. Однако все эти усовершенствования смогут быть в полной мере реализованы только при условии грамотной эксплуатации автотранспортных средств, которая в основном зависит от водителя, от его знания конструкции автомобиля, умения своевременно обнаруживать и устранять неисправности и от его мастерства вождения. 2. Система охлаждения 2.1 Виды систем охлаждения и принцип их работы В современных автомобильных двигателях в полезную работу превращается лишь 23—40% теплоты, выделяющейся в цилиндрах двигателя, остальная теплота уносится отработавшими газами, с охлаждающей жидкостью или воздухом и затрачивается на трение, рассеивание в окружающую среду внешними поверхностями двигателя и др. Теплота, используемая на выполнение полезной работы, а также ее затраты на указанные виды потерь составляют тепловой баланс двигателя. Так как сгорание в двигателе происходит при высоких температурах, достигающих 2100—2300°С, то без принудительного охлаждения такие детали, как цилиндр, поршень и направляющие втулки клапанов, нагревались бы до температуры, значительно превышающей температуру воспламенения (вспышки) масла. 46 Поэтому для поддержания нормального теплового режима работы узлов и механизмов необходимо непрерывно отводить теплоту от взаимодействующих деталей, не допуская их перегрева. Для этого и служит система охлаждения двигателя. Количество теплоты, которое должна отводить система охлаждения, зависит от мощности и режимов работы двигателя. При перегреве двигателя увеличиваются силы трения и изнашивание деталей, уменьшаются тепловые зазоры, происходит коксование масла с отложением нагара, ухудшается наполнение цилиндров карбюраторных двигателей горючей смесью, а дизелей—очищенным воздухом. Однако при чрезмерном отводе тепла возникает переохлаждение двигателя, которое вызывает изменение вязкостных свойств масла, что приводит также к увеличению изнашивания деталей и механических потерь на трение, снижению мощности и экономичности двигателя. Поэтому следует поддерживать тепловой режим двигателя в пределах 85—95 °С независимо от его нагрузки и температуры окружающей среды. На современных поршневых двигателях применяют жидкостное или воздушное охлаждение. При воздушном охлаждении через оребренные поверхности блока и головки цилиндров излишняя теплота отводится потоком воздуха, создаваемым многолопастным вентилятором с устройством, регулирующим интенсивность охлаждения. В воздушной системе охлаждения отсутствует радиатор, жидкостный насос, каналы и трубопроводы для охлаждающей жидкости, поэтому к преимуществам такой системы относятся простота конструкции, уменьшение массы, удобство обслуживания и, кроме того, исключается опасность размораживания двигателя зимой. Размораживание т. е. замерзание воды в системе водяного охлаждения, приводит к образованию трещин в блоке цилиндров. Однако система воздушного охлаждения хотя и обеспечивает условия для необходимого отвода тепла от сильно нагретых деталей,, но при этом требуется сравнительно большая мощность двигателя для приведения в действие вентилятора и затрудняется пуск двигателя при низкой температуре из-за отсутствия возможности прогрева его горячей водой. На автомобильных двигателях наибольшее распространение получили жидкостные системы с принудительной циркуляцией охлаждающей жидкости. Такие системы более эффективны в работе и вместе с пусковыми устройствами обеспечивают легкий пуск двигателя при отрицательных температурах окружающего воздуха и создают меньший шум при его работе. В качестве охлаждающих жидкостей применяется вода или ее этиленгликолевые смеси — антифризы. Широкое распространение получили смеси, замерзающие при низкой температуре: ТОСОЛ А-40 и ТОСОЛ А-65. Оба антифриза получают разбавлением технического этиленгликоля водой, например ТОСОЛ А-40 представляет собой 50%-ную смесь воды с этиленгликолем, которая при температуре —40°С превращается не в лед, а в густую массу, не вызывающую повреждения блока цилиндров или радиатора. Принципиальные схемы жидкостной системы охлаждения двигателей показаны на рис.1. В зависимости от теплового состояния двигателя циркуляция жидкости в системе происходит по большому или малому кругу (рис.1, а) и обеспечивается насосом 8, который приводится в действие от шкива 18, соединенного через клиноременную передачу со шкивом коленчатого вала. При нормальном тепловом режиме работы двигателя охлаждающая жидкость циркулирует по большому кругу. При этом клапан термостата 10 открыт и жидкость через патрубок 11 подается к верхнему бачку 13 радиатора 16, откуда по трубкам сердцевины радиатора она поступает в нижний его бачок 20 (направление движения жидкости показано стрелками). Жидкость, проходящая через радиатор, охлаждается воздухом, подаваемым под напором вентилятором 19, и потоком воздуха, возникающим при движении автомобиля и регулируемым при помощи жалюзи (пластин-створок) 17. Охлажденная жидкость через нижний патрубок 22 радиатора подается снова к насосу 8 и далее в рубашку охлаждения 7 блока и головки цилиндров. При пуске и работе непрогретого двигателя, когда температура охлаждающей жидкости ниже 72 °С, ее циркуляция происходит по малому кругу. В этом случае жидкость не поступает в радиатор, так как клапан термостата 10 закрыт, а проходит по рубашке 7 блока и головки цилиндра и через перепускной канал 9, омывая термостат 10, снова поступает к насосу, обеспечивая тем самым быстрый прогрев холодного двигателя. По мере повышения температуры охлаждающей жидкости клапан термостата открывается, и она начинает циркулировать по большому кругу. В V-образных двигателях ЗИЛ-130, ЗМЗ-53-11 и др. (рис.1,6) жидкость через приливы 23 корпуса насоса подается в раструбы рубашки охлаждения левого и правого рядов цилиндров и далее через полость 26 впускного трубопровода и термостат 10 поступает в радиатор 16, а затем к насосу. Одновременно из волости трубопровода по гибкому шлангу 24 жидкость также поступает в рубашку охлаждения компрессора, а по шлангу 25 возвращается в насос. Для нормальной работы двигателя температура охлаждающей жидкости при входе в водяную рубашку должна быть в пределах 75—80 °С, а при.выходе из нее 85—95 °С. Для повышения температуры кипения воды в современных двигателях применяют закрытую систему охлаждения которая может сообщаться с атмосферой при помощи пароотводной трубки 15 только через паровоздушный клапан, расположенный в пробке 14 радиатора или в пробке 27 расширительного бачка 28, имеющего сливной кран 21. Температуру охлаждающей жидкости контролируют с помощью дистанционных магнитоэлектрических термометров, состоящих из указателей 5 (рис.1, а) и встроенных в систему охлаждения датчиков 6. О перегреве жидкости в системе охлаждения сигнализирует контрольная лампочка, установленная на щитке приборов (у автомобилей ЗИЛ-130, ГАЗ-53-12 и ГАЗ-24-10 «Волга») и соединенная с термодатчиком 12, ввернутым в верхний бачок радиатора. Из-за расположения насоса в передней части двигателя теплоотдача от задних цилиндров и их камер сгорания и других деталей ухудшается, так как к ним поступает уже подогретая передними цилиндрами охлаждающая жидкость. Поэтому в отдельных конструкциях двигателей предусматривается циркуляция жидкости через распределительную трубу 4 или продольный канал с отверстиями, направленными к наиболее нагретым деталям (выпускные клапаны, стенки камеры сгорания, свечи зажигания и т. д.). Кроме основного назначения, систему охлаждения двигателя используют для отопления пассажирского помещения кузовов легковых автомобилей и автобусов, а также кабин грузовых автомобилей. Для этой цели в отопительной системе имеются специально встроенные в салон кузова или кабины радиаторы 3, к которым через кран 1 и шланги 2 нагретая жидкость подается из системы охлаждения двигателя. 2.2 Устройство и работа приборов жидкостной системы охлаждения Жидкостный насос. Для создания принудительной циркуляции охлаждающей жидкости в системе охлаждения служит жидкостный насос центробежного типа (рис.2). Расположен насос в передней части блока цилиндров и приводится в действие клиноременной передачей от шкива коленчатого вала. Он состоит из корпуса 7 крыльчатки 5 Рис. 2. Центробежный насос и вентилятор и корпуса 10 подшипников, соединенных между собой через прокладку 6. Вал 4 насоса вращается в двух шарикоподшипниках 3, снабженных сальниками для удержания масла. Передний подшипник фиксируется упорным кольцом 2, а задний удерживается от перемещения дистанционной втулкой 11. Пластмассовая крыльчатка 5 крепится на заднем конце вала при помощи металлической ступицы. При вращении крыльчатки жидкость из подводящего патрубка 9 поступает к ее центру, затем захватывается лопастями и под действием центробежной силы отбрасывается к стенкам корпуса 7, а оттуда через полые приливы 8 подается в рубашку охлаждения двигателя. Герметичность вращающихся деталей, расположенных в корпусе 7 насоса, обеспечивается самоподвижным сальником, установленным в крыльчатке и состоящей из уплотнительной шайбы 17, резиновой манжеты 16 и пружины, прижимающей шайбу 17 к торцу корпуса подшипников. Своими выступами шайба 17 входит в пазы крыльчатки 5 и закрепляется обоймой 18. На переднем конце вала 4 с помощью втулки 12 установлена ступица 13, к которой крепится шкив 14 привода насоса и вентилятора. Вентилятор. Для повышения скорости потока воздуха, проходящего через радиатор, служит вентилятор 1 (см. рис.2). Устанавливаемые на двигателях вентиляторы имеют 4, 5 и 6 лопастей 15, которые изготовляют из листовой стали или пластмассы (у автомобилей ВАЗ-2106 «Жигули», «Москвич-2140» и др.). На ряде двигателей лопасти вентилятора располагают в направляющем кожухе (диффузора), который улучшает вентиляцию подкапотного пространства и увеличивает количество воздуха, проходящего через радиатор. Для этой же цели лопасти 15 вентиляторов двигателей ЗМЗ-53, ЗИЛ-130 и др. изготовляют с отогнутыми концами в сторону радиатора. На двигателях автомобилей ЗИЛ-130, ГАЗ-53-12, автобусах ЛиАЗ-677М и на многих легковых автомобилях привод вентилятора осуществляется клиноременной передачей. На дизелях ЯМЗ-236, -238 вентилятор приводится в действие через систему зубчатых колес непосредственно от зубчатого колеса распределительного вала. На ряде моделей двигателей автомобилей семейства ГАЗ (ГАЗ-53-12 и ГАЗ-24-02) для лучшего поддержания в заданных пределах их теплового режима и уменьшения потери мощности на привод вентилятора последний приводится в действие электромагнитной муфтой. Центробежный насос в сборе с такой муфтой показан на рис. 4.3. Он состоит из корпуса 11, вала 7, крыльчатки 9 с лопастями 10, самоподжимным сальником 8 и электромагнитной муфты 2. В зависимости от температуры жидкости в системе охлаждения электромагнитная муфта включается или выключается. Она состоит из электромагнита 6, установленного вместе со шкивом 1 на ступице 5 насоса, и ступицы 3 вентилятора, соединенной пластинчатой пружиной с якорем, свободно вращающимся вместе со ступицей на двух шарикоподшипниках 4. Катушка электромагнита соединена с тепловым реле, датчик которого расположен в верхнем бачке радиатора. Когда температура охлаждающей жидкости в верхнем бачке радиатора достигает 85—90 °С, контакты теплового реле замыкаются и в катушку электромагнита поступает ток от аккумуляторной батареи. Якорь притягивается к электромагниту, и ступица вместе с лопастями вентилятора начинает вращаться. При понижении температуры охлаждающей жидкости до 80—85 °С контакты реле размыкаются и вентилятор отключается. На автомобилях ВАЗ-2108 «Спутник», -2109 и их модификациях устанавливают электровентиляторы. Включение и выключение электродвигателя вентилятора происходят в зависимости от температуры охлаждающей жидкости датчиком, ввернутым в верхний бачок радиатора. На дизелях автомобилей семейства КамАЗ в приводе вентилятора установлена гидромуфта, передающая крутящий момент от коленчатого вала к вентилятору. Гидромуфта имеет регулятор-выключатель с термосиловым датчиком, реагирующим на тепловой режим работы двигателя. С повышением температуры охлаждающей жидкости до 80 °С активная масса, находящаяся в баллоне включателя, начинает плавиться с увеличением объема, вследствие чего шток датчика, воздействуя на золотник, открывает канал главной масляной магистрали, из которого масло поступает в гидромуфту, обеспечивающей плавное включение вентилятора. В зависимости от теплового состояния двигателя изменяется перемещение золотника, а следовательно, количество подаваемого масла в гидромуфту, что в свою очередь влияет на частоту вращения вентилятора. При понижении температуры охлаждающей жидкости ниже 70 °С подача масла в гидромуфту прекращается и вентилятор отключается. |