Главная страница

Реферат по физике Световая волна. Реферат физика. Световая волна, ее природа, характеристики. Скорость света в среде


Скачать 499.3 Kb.
НазваниеСветовая волна, ее природа, характеристики. Скорость света в среде
АнкорРеферат по физике Световая волна
Дата19.10.2022
Размер499.3 Kb.
Формат файлаdocx
Имя файлаРеферат физика.docx
ТипРеферат
#741796

«Казанский государственный энергетический университет "

Реферат

На тему: «Световая волна, ее природа, характеристики.

Скорость света в среде»

по дисциплине «Физика»

Выполнил(а):

Сурков П.С.

Группа _____ЗПТ-1-20_

Шифр (№ студ билета): ___

Номер темы реферата ___1______

Дата предоставления на проверку:______­­­­­­___________

Казань 2021

Содержание

Введение …………………………………………..…………………………3

  1. Свет и его характеристика……………………………………………......4

  2. Природа света……………………………………………………………..8

  3. Свойства света ……………………………………………..……………10

    1. Волновые свойства света…………………………………………....10

    2. Квантовые свойства света …………………………………………..13

  4. Скорость света в среде………………………………………………….16

Заключение………………………………………………………………….17

Список использованной литературы………………………………………18

Введение

 Вопрос о природе света тоже давно интересовал человека.

Некоторые предложения о том, что собой представляет свет, высказывали еще древнегреческие ученые. Однако никаких заслуживающих нашего внимания представлений о природе света в те времена не возникло.

В конце семнадцатого века Снеллиусом и Декартом были установлены законы преломления света, которые, в последствии, сыграли большую роль в развитии взглядов на природу света.

Первые теории света – корпускулярная и волновая – появились почти одновременно в середине семнадцатого века. Создателем корпускулярной теории света был Ньютон, считавший свет потоком различного вида частиц (корпускул), испускаемых светящимся телом и движущихся в пространстве прямолинейно. Согласно Ньютону, каждый вид корпускул, попавший в глаз человека, вызывает у него ощущение определенного цвета. На основе корпускулярной теории легко объясняются законы прямолинейного распространения света и законы отражения.

Во времена Ньютона скорость света в различных средах еще не была определена. Поэтому выводы, вытекающие из корпускулярной теории света Ньютона, не могли быть экспериментально проверены.

Гипотеза о волновой природе света была впервые высказана Гуком, а ее разработка была сделана Гюйгенсом. Гюйгенс считал, что свет представляет собой упругие волны, распространяющиеся в особой среде – эфире, который заполняет все пространство и проникает внутрь любых тел. Исходя из волновых представлений о свете, Гюйгенс теоретически обосновал законы зеркального отражения и законы преломления света, а так же явление двойного лучепреломления.



  1. Свет и его характеристика

Свет — электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом, воспринимаемое человеческим глазом.

Под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра.

В физике свет изучается в разделе Оптика, может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов: частиц, обладающих определённой энергией и нулевой массой.

Одной из характеристик света является его цвет, который определяется длиной волны для монохроматического излучения, или суммарным спектром сложного излучения.

Свет может распространяться там, где звук уже не существует (если смотреть через прозрачный колпак, из-под которого выкачали воздух, то видно, как бьётся молоточек колокольчика под колпаком, а звука не слышно). Значит, световые колебания распространяются в особой среде, эту среду Гюйгенс назвал эфиром (современная наука отрицает существование эфира).

Яркость — это поток, посылаемый в данном направлении единицей видимой поверхности в единичном телесном угле. Отношение силы света, излучаемого поверхностью, к площади её проекции на плоскости, перпендикулярной оси наблюдения. Единице измерения СИ служит нит (1нт=1кд/1м).

Сила света — это поток излучения, приходящийся на единицу телесного угла, в пределах которого он распространяется. Телесный угол нужно выбирать таким образом, чтобы поток в нём можно было считать равномерным, тогда сила света источника по определённому направлению численно равна световому потоку, заключённому в единичном телесном угле. Единица измерения СИ: кандела (кд)=Ватт (Вт)(или Люмен (лм))/ Стерадиан (ср), если световой поток испускается точечным источником равномерно по всем направлениям, то есть истинная сила света точечного источника по любому направлению.

Освещённость — физическая величина, численно равная световому потоку, падающему на единицу поверхности:

Единицей измерения освещённости в системе СИ служит люкс (1 люкс = 1 люмену на квадратный метр), в СГС — фот (один фот равен 10 000 люксов). В отличие от освещённости, выражение количества света, отражённого поверхностью, называется яркостью.

Освещённость прямо пропорциональна силе света источника света. При удалении его от освещаемой поверхности её освещённость уменьшается обратно пропорционально квадрату расстояния (Закон обратных квадратов).

Когда лучи света падают наклонно к освещаемой поверхности, освещённость уменьшается пропорционально косинусу угла падения лучей.

Световой поток — соответствующая энергетическому потоку излучения световая величина, то есть мощность излучения, воспринимаемая нормальным человеческим глазом.

Для вычисления величины светового потока необходимо проинтегрировать в диапазоне от 380 до 780 нм спектральную мощность излучения (измеряется в Вт/нм), помноженную на кривую спектральной чувствительности глаза V; результат следует умножить на фотометрический эквивалент излучения Km=683 лм/Вт:

Измерение светового потока от источника света производится при помощи специальных приборов — сферических фотометров, либо фотометрических гониометров. Трудность измерения заключается в том, что необходимо измерить поток, который испускается во всех направлениях — в телесный угол 4.

Для этого можно использовать сферический фотометр — прибор, представляющий собой сферу с внутренним покрытием, имеющим коэффициент отражения близкий к 1.

Исследуемый источник света помещается в центр сферы и при помощи фотоэлемента, вмонтированного в стенку сферы и покрытого фильтром с кривой пропускания, равной кривой спектральной чувствительности глаза, измеряется сигнал, пропорциональный освещенности фотоэлемента, которая, в свою очередь, в данном устройстве пропорциональна световому потоку от источника света (фотоэлемент измеряет только рассеяный свет, так как заслонён от прямого излучения источника специальным экраном). Путём сравнения полученного сигнала с сигналом от эталонного источника света можно измерить абсолютный световой поток источника света.

Другая возможность состоит в применении фотометрических гониометров. В этом случае производится измерение освещённости, создаваемой исследуемым источником, на воображаемой сферической поверхности. Для этого люксметр проходит последовательно при помощи гониометра все позиции на сфере. Интегрируя измеренные освещённости (измеряются в люксах: 1 люкс = 1 люмен/м) по площади сферы (м), получим абсолютный световой поток источника света (в люменах). Условием получения абсолютных значений является калиброванный в абсолютных величинах люксметр. Можно также использовать простой фотоэлемент, если сравнивать измеренный поток с потоком от эталонного источника.

Световая отдача источника света — отношение излучаемого источником светового потока к потребляемой им мощности. Измеряется в люменах на ватт (лм/вт). Служит характеристикой источников как таковых и их экономичности, показывая какое количество затраченной энергии переходит в тепло или какие-либо другие виды энергии кроме электромагнитной.

Cкорость света — абсолютная величина скорости распространения электромагнитных волн в вакууме. В физике традиционно обозначается латинской буквой «c».

Скорость света в вакууме - фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела, а свойства пространства и времени в целом. По современным представлениям, скорость света в вакууме — предельная скорость движения частиц и распространения взаимодействий. Также важен тот факт, что эта величина абсолютна.

Это один из постулатов СТО. В 1977 году удалось вычислить приблизительную скорость света, равную 299792458±1,2 м/с рассчитанную исходя из эталонного метра 1960 года. На данный момент считают, что скорость света в вакууме — фундаментальная физическая постоянная, по определению, точно равная 299 792 458 м/с, или же 1 079 252 848,8 км/ч. Точное значение связано с тем, что с 1983 года за эталон метра принято расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды.

Основополагающий опыт Майкельсона показал, что скорость света в вакууме не зависит ни от скорости движения источника света, ни от скорости движения наблюдателя.

В природе со скоростью света распространяются: собственно видимый свет, другие виды электромагнитного излучения (радиоволны, рентгеновские лучи и др.)

Из специальной теории относительности следует, что движение любых материальных объектов быстрее скорости света невозможно, поскольку наличие частиц, обладающих подобным свойством (называемых тахионами), привело бы к противоречию с принципом причинности.

Действительно, если начало и конец пути тахиона отстоят друг от друга на расстояние большее, чем мог пройти за время пути свет, то согласно преобразованиям Лоренца получается, что в некоторой системе отсчёта, процесс будет выглядеть так, что конец пути предшествует во времени его началу. Иными словами, наблюдатель этой системы отсчёта придёт к заключению, что источник тахионов влияет на прошлое, что является нарушением принципа причинности. Принцип причинности является несомненным опытным фактом, хотя и не является логически обязательным (ни одна теория не использует его в качестве постулата).

Частицы, движущиеся медленнее света, называются тардионами. Тардионы не могут достичь скорости света, а только лишь сколь угодно близко подойти к ней, так как при этом их энергия становится неограниченно большой. Все тардионы обладают массой покоя, в отличие от безмассовых фотонов и гравитонов, которые всегда движутся со скоростью света.

В планковских единицах скорость света в вакууме равна 1, то есть свет проходит 1 единицу планковской длины за единицу планковского времени.


  1. Природа света

В V веке до н. э., Эмпедокл предположил, что всё в мире состоит из четырёх элементов: огня, воздуха, земли и воды. Он считал, что из этих четырёх элементов, богиня Афродита создала человеческий глаз, и зажгла в нём огонь, свечение которого и делало зрение возможным. Для объяснения факта, что тёмной ночью человек видит не так хорошо, как днём, Эмпедокл постулировал взаимодействие между лучами, идущими из глаз и лучами от светящихся источников, таких, как солнце.

Примерно в 300 году до н. э. Евклидом был написан труд «Оптика», дошедший до наших дней, в котором он исследовал свойства света. Евклид утверждал, что свет распространяется по прямой линии, он изучал законы отражения света и описал их математически. Он выразил сомнение в том, что зрение является следствием исхождения луча из глаза, задаваясь вопросом: как человек, открыв в ночное время глаза, устремлённые в небо, может моментально увидеть звёзды. Проблема решалась только, если скорость луча света, исходящего из человеческого глаза, была бесконечно большой.

Пифагор был одним из первых ученых, кто дал научную гипотезу относительно природы света. Он первый не только догадался, но и доказал, что свет распространяется прямолинейно. В XVII веке сторонником этой теории стал Исаак Ньютон. Он объяснял много световых явлений, основываясь на том, что свет – это поток специальных частиц. Согласно корпускулярной теории, свет представляет собой поток частиц (корпускул), испускаемых светящимися телами. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости корпускул при переходе из одной среды в другую.

В это же время появилась другая теория – волновая теория света. Сторонником этой теории был Христиан Гюйгенс. Он пытался объяснить те же явления, что и Ньютон, только с той позиции, что свет – это волна. Рассматривала свет как волновой процесс, подобный механическим волнам. Каждая точка, до которой доходит волна, становится центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. Под волновым фронтом Гюйгенс понимал геометрическое место точек, до которых одновременно доходит волновое возмущение. С помощью принципа Гюйгенса были объяснены законы отражения и преломления.

И хотя все указывало на то, что свет – это волна, В XIX веке Генрих Герц изучал свойства электромагнитных волн и показал, что свет может быть частицей. Герц открыл явление фотоэффекта.

В XX веке пришли к окончательному решению, введя понятие корпускулярно-волнового дуализма света.



Рис.1 - корпускулярно-волновой дуализм

Свет ведет себя при распространении как волна (волновые свойства), а при излучении и поглощении – как частица (со всеми свойствами частиц). То есть свет имеет двойную природу.

Поэтому все явления рассматриваются с позиций этих двух теорий.


  1. Свойства света

    1. Волновые свойства света

Отражение — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными оптическими свойствами в котором волновой фронт возвращается в среду, из которой он пришёл. Законы отражения. Формулы Френеля. Закон отражения света — устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отраженный лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча.

Этот закон является следствием применения принципа Ферма к отражающей поверхности и, как и все законы геометрической оптики, выводится из волновой оптики. Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет. В этом случае, равно как и закон преломления света, он ничего не утверждает об интенсивности отражённого света.

Преломление (рефракция) — явление изменения пути следования светового луча (или других волн), возникающее на границе раздела двух прозрачных (проницаемых для этих волн) сред или в толще среды с непрерывно изменяющимися свойствами. Преломление свойственно для многих видов излучения различной природы, например, электромагнитных и звуковых волн.



Рис.2 – Преломление света

Преломление практически любых волн подчиняется закону Снелла (лишь бы длина волны не была настолько большой по сравнению с преломляющим объектом, что дифракция практически полностью замаскировала бы преломление, а среды были изотропными - что очень часто бывает на практике).

Тесно связано с преломлением такое явление, как отражение от границы прозрачных сред. В каком-то смысле это две стороны одного и того же явления. Так, например, явление полного внутреннего отражения связано с тем, что преломленной волны, которая бы удовлетворяла закону преломления для некоторых углов падения не находится, и волне приходится целиком отражаться.

Для каждого конкретного типа волн и сред имеются определенные соотношения, связывающие интенсивность падающей, преломленной и отраженной волны в зависимости от угла падения.

Интерференция света — явление взаимного усиления или ослабления света до полной темноты (гашения) при наложении двух его волн, которые имеют одинаковые частоты колебаний. Интерференция возникает, когда два когерентных источника света, т. е. испускающие полностью однородные лучи света с постоянной разностью фаз, расположены очень близко друг от друга. Такими источниками света являются, например, два зеркальных изображения одного источника света. У двух разных источников света никогда не сохраняется постоянная разность фаз волн, поэтому их лучи не интерферируют.



Рис.3-поляризация света

Поляризация света, упорядоченность в ориентации вектора напряженности электрического E и магнитного H полей световой волны в плоскости, перпендикулярной распространению света. Различают линейную поляризацию света, когда E сохраняет постоянные направления (плоскость, в которой лежит E и световой луч, называется плоскостью поляризации), эллиптическую, при которой конец E описывает эллипс, и круговую (конец E описывает круг). Обычный (естественный) свет не поляризован. Поляризация света возникает при отражении, преломлении света, прохождении через анизотропную среду. Первые указания на поперечную анизотропию светового луча получены Х. Гюйгенсом в 1690; понятие "поляризация света" было введено И. Ньютоном в 1705, а объяснена поляризация света электромагнитной теорией света Дж.К. Максвелла. Поляризованный свет широко используется во многих областях техники (например, для плавной регулировки света, при исследовании упругих напряжений и т.д.). Человеческий глаз не различает поляризацию света, а глаза некоторых насекомых, например пчел, воспринимают ее.

Дисперсия света (разложение света) — это явление зависимости абсолютного показателя преломления вещества от длины волны света (частотная дисперсия), а также, от координаты (пространственная дисперсия), или, что то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты).



Рис.4 –дисперсия света

Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее. Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней: у красного цвета максимальная скорость в среде и минимальная степень преломления, у фиолетового цвета минимальная скорость света в среде и максимальная степень преломления. Однако в некоторых веществах (например в парах иода) наблюдается эффект аномальной дисперсии, при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров иода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

Белый свет разлагается на спектр и в результате прохождения через дифракционную решётку или отражения от нее (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр — равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

Давление света - результат передачи телу импульса поглощаемых или отражаемых им фотонов. При действии солнечного излучения на макроскопические тела оно чрезвычайно мало (обнаружено впервые П. Н. Лебедевым). Давление света на малые частицы в космических процессах того же порядка, что и силы тяготения.

Закон дисперсии в теории волн — это связь частоты и волнового вектора волны:

По своей сути, этот закон выражает связь временной и пространственной периодичности волны, то есть с каким периодом будет колебаться периодическое возмущение заданной длины волны. Из закона дисперсии можно получить фазовую и групповую скорости волны:

Дисперсией в оптике называется разложение луча белого света в спектр при пропускании его через призму. Это связано с тем, что электромагнитные волны с разной частотой колебаний обладают разными коэффициентами преломления в стекле, а это, в свою очередь связано с тем, что скорость света в стекле зависит от длины волны. Таким образом, именно нелинейный закон дисперсии для света в стекле приводит к классическому явлению дисперсии.

В связи с тем, что, согласно квантовым представлениям, каждой волне соответствует некоторая частица или квазичастица и наоборот, закон дисперсии можно также записывать и для частиц. В частности, в физике твёрдого тела закон дисперсии выражает связь между энергией частицы (например, электрона, фонона) и его волновым вектором.

    1. Квантовые свойства света

Фотоэффект — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Фотокатод — электрод вакуумного электронного прибора, непосредственно подвергающийся воздействию электромагнитных излучений.

Зависимость спектральной чувствительности от частоты или длины волны электромагнитного излучения называют спектральной характеристикой фотокатода.

Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твердых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости или вентильного фотоэффекта.

Эффект Комптона (Комптон-эффект) — явление изменения длины волны электромагнитного излучения вследствие рассеивания его электронами. Обнаружен американским физиком Артуром Комптоном в 1923 году для рентгеновского излучения. В 1927 Комптон получил за это открытие Нобелевскую премию по физике.


Рис.5- Эффект Комптона

Уменьшение энергии фотона после комптоновского рассеяния называется комптоновским сдвигом. В классической электродинамике рассеяние электромагнитной волны на заряде (томсоновское рассеяние) не сопровождается уменьшением её частоты.

Объяснить эффект Комптона невозможно в рамках классической электродинамики. С точки зрения классической физики электромагнитная волна является непрерывным объектом и в результате рассеяния на свободных электронах изменять свою длину волны не должна. Эффект Комптона является прямым доказательством квантования электромагнитной волны, другими словами подтверждает существование фотона. Эффект Комптона является ещё одним доказательством справедливости корпускулярно-волнового дуализма микрочастиц.


  1. Скорость света в среде


Скорость света в свободном пространстве (вакууме) – скорость распространения любых электромагнитных волн, в том числе и световых. Представляет собой предельную скорость распространения любых физических воздействий и инвариантна при переходе от одной системы отсчета к другой

На данный момент считают, что скорость света в вакууме — фундаментальная физическая постоянная, по определению, точно равная 299 792 458 1,2 м/с. Точность значения связана с тем, что с 1983 года метр в Международной системе единиц (СИ) определён, как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды.

Хотя в принципе движение каких-то объектов со скоростью, большей скорости света в вакууме, вполне возможно, однако это могут быть, с современной точки зрения, только такие объекты, которые не могут быть использованы для переноса информации с их движением (например — солнечный зайчик в принципе может двигаться по стене со скоростью большей скорости света, но никак не может быть использован для передачи информации с такой скоростью от одной точки стены к другой).

В прозрачных средах, таких как воздух или стекло, свет распространяется медленнее, чем скорость света в вакууме. То же самое относится и к электромагнитным волнам в проводниках. Они также движутся медленнее скорости света. Это отношение скорости света c к скорости в среде v называется показателем преломления n= c / v.

Скорость света в воздухе.

В воздухе этот показатель преломления для видимого света составляет 1,0003. Поэтому в воздухе свет проходит на около 90 километров в секунду медленнее, чем в вакууме, то есть c / 1,0003 ≈ 299910 км / с .

Скорость света в воде.

В воде коэффициент преломления составляет около 1,3 , поэтому скорость света снижается до 230 769 километров в секунду, то есть c / 1,3 ≈ 230 769 км / с .

Скорость света в стекле.

В стекле коэффициент преломления равен 1,5. Если вы рассчитаете это, как и раньше, то получите скорость около 200 000 километров в секунду, то есть c / 1,5 ≈ 200 000 км / с.


Заключение
Таким образом, к началу XVIII века существовало два противоположных подхода к объяснению природы света: корпускулярная теория Ньютона и волновая теория Гюйгенса. Обе теории объясняли прямолинейное распространение света, законы отражения и преломления. Весь XVIII век стал веком борьбы этих теорий. Однако в начале XIX столетия ситуация коренным образом изменилась. Корпускулярная теория была отвергнута и восторжествовала волновая теория. Большая заслуга в этом принадлежит английскому физику Т. Юнгу и французскому физику О. Френелю, исследовавшим явления интерференции и дифракции. Исчерпывающее объяснение этих явлений могло быть дано только на основе волновой теории.

Свет имеет очень большое значение для жизни человека.

- Свет обладает корпускулярно-волновым дуализмом: является электромагнитной волной, но при излучении и поглощении ведет себя как поток частиц – фотонов;

- Понятие цвета связано с длиной волны и частотой. А так же способностью тел поглощать электромагнитные волны;

- Глаз является сложной оптической системой. Он способен отличать электромагнитные волны оптического диапазона разной частоты, т. е. отличать свет.

- Глаз человека наиболее чувствителен к волнам 546 Нм, что соответствует зеленому цвету.

- Электромагнитные волны оптического диапазона разной частоты могут влиять на нервную систему.

- Объяснение зрения дано на основе фотохимической теории света.

- На основе физических законов можно объяснить такое явление как - голубой цвет неба и т.д.

Список использованной литературы



  1. Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни/ Г. Я. Мякишев, Б. Б. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 19-е изд. — М. : Просвещение, 2010. — 399 с.;

  2. Савельев, Игорь Владимирович. Курс общей физики [Электронный ресурс]: учебное пособие для вузов. В 3-х т./ И.В.Савельев Т.2 : Электричество и магнетизм. Волны. Оптика : учебное пособие для вузов. -СПб.: Лань, 2016. -496 с.: ил.

  3. Волновая и квантовая оптика: лаб. практикум/ Н. В. Толстая [и др.]. - Казань: КГЭУ, 2009. -119 с.

  4. Скорость света. Электронный ресурс: https://light- fizika.ru/index.php/11-klass?layout=edit&id=150 (Дата обращения 05.06.2021)

  5. Что такое световые волны и его характеристики. Электронный ресурс: https://m-focus.ru/chto-takoe-svetovye-volny/ (дата обращения 10.06 2021)


написать администратору сайта