амв. 31БД, Финансовая математика, 27 марта 2020. Тема Эквивалентность процентных ставок. Финансовая эквивалентность обязательств Понятие эквивалентности процентных ставок
Скачать 55.53 Kb.
|
Финансовая математика Тема № 3.1. Эквивалентность процентных ставок. Финансовая эквивалентность обязательств Понятие эквивалентности процентных ставок. Вывод формул эквивалентности ставок на основе равенства множителей наращения. Принцип финансовой эквивалентности обязательств. Уравнение эквивалентности Достаточно часто в практике возникает ситуация, когда необходимо произвести между собой сравнение по выгодности условий различных финансовых операций и коммерческих сделок. Условия финансово-коммерческих операций могут быть весьма разнообразными и напрямую несопоставимыми. Для сопоставления альтернативных вариантов ставки, используемые в условиях контрактов, приводят к единообразному показателю. Различные финансовые схемы можно считать эквивалентными в том случае, если они приводят к одному и тому же финансовому результату. Понятие эквивалентности процентных ставок. Вывод формул эквивалентности ставок на основе равенства множителей наращения. Эквивалентные процентные ставки – такие ставки, значения, которых в конкретных условиях приводят к одинаковым финансовым результатам, т.е. замена одного вида ставки на другой при соблюдении принципа эквивалентности не изменяет финансовых отношений сторон в рамках одной операции. Классическим примером эквивалентности являются номинальная и эффективная ставка процентов: m i = (1 + j / m) - 1. номинальная 1/m j = m[(1 + i) - 1]. эффективная Эффективная ставка измеряет тот относительный доход, который может быть получен в целом за год, т.е. совершенно безразлично – применять ли ставку j при начислении процентов m раз в год или годовую ставку i, – и та, и другая ставки эквивалентны в финансовом отношении. Поэтому совершенно не имеет значения, какую из приведенных ставок указывать в финансовых условиях, поскольку использование их дает одну и ту же наращенную сумму. В США в практических расчетах применяют номинальную ставку, а в европейских странах предпочитают эффективную ставку процентов. Если две номинальные ставки определяют одну и ту же эффективную ставку процентов, то они называются эквивалентными. Пример. Предполагается поместить капитал на 4 года либо под сложную процентную ставку 20% годовых с полугодовым начислением процентов, либо под простую процентную ставку 26% годовых. Найти оптимальный вариант. Решение: Находим для сложной процентной ставки эквивалентную простую ставку: m*n 2*4 i = [(1 + j / m) - 1] / n = [(1 + 0,2 / 2) - 1] / 4 = 0,2859. Таким образом, эквивалентная сложной ставке по первому варианту простая процентная ставка составляет 28,59% годовых, что выше предлагаемой простой ставки в 26% годовых по второму варианту, следовательно, выгоднее разместить капитал по первому варианту, т.е. под 20% годовых с полугодовым начислением процентов. Принцип финансовой эквивалентности обязательств. В практике нередко возникают случаи, когда необходимо заменить одно обязательство другим, например с более отдаленным сроком платежа, досрочно погасить задолженность, объединить несколько платежей в один (консолидировать платежи) и т.п. В таких ситуациях неизбежно возникает вопрос о принципе, на котором должно базироваться изменение контракта. Таким общепринятым принципом является финансовая эквивалентность обязательств, которая предполагает неизменность финансовых отношений сторон до и после изменения контракта. Эквивалентными считаются такие платежи, которые, будучи "приведены" к одному моменту времени (focal date), оказываются равными. Приведение осуществляется путем дисконтирования к более ранней дате или, наоборот, наращения суммы платежа (если эта дата относится к будущему). Если при изменении условий принцип финансовой эквивалентности не соблюдается, то одна из участвующих сторон терпит ущерб, размер которого можно заранее определить. По существу, принцип эквивалентности следует из формул наращения и дисконтирования, связывающих величины Р и S. Сумма Р эквивалентна S при принятой процентной ставке и методе ее начисления. Две суммы денег S1 и S2, выплачиваемые в разные моменты времени, считаются эквивалентными, если их современные (или наращенные) величины, рассчитанные по одной и той же процентной ставке и на один момент времени, одинаковы. Замена S1 на S2в этих условиях формально не изменяет отношения сторон. Пример. Имеются два обязательства. Условия первого: выплатить 400 тыс. руб. через четыре месяца; условия второго: выплатить 450 тыс. руб. через восемь месяцев. Можно ли считать их равноценными? Так как платежи краткосрочные, то при дисконтировании на начало срока применим простую ставку, равную, допустим, 20%, и получим: = 375,00 = = 397,06 тыс. руб. Как видим, сравниваемые обязательства не являются эквивалентными при заданной ставке и в силу этого не могут адекватно заменять друг друга. Уравнение эквивалентности В практической деятельности довольно часто возникают ситуации, когда один поток платежей заменяется другим потоком или одним платежом. При этом соблюдается неизменность финансовых отношений сторон до и после заключения контракта или, другими словами, сохраняется финансовая эквивалентность обязательств. Расчет платежей в этом случае базируется на уравнении финансовой эквивалентности. Уравнением финансовой эквивалентности является равенство сумм заменяемых и заменяющих платежей, приведенных к одному моменту времени. Принцип финансовой эквивалентности обязательств позволяет, в частности, сравнивать два отдельных платежа, выплачиваемые в различные моменты времени. Пусть имеются два платежа Sx и S2 со сроками соответственно пх и п2. При оценке этих платежей сравниваются их современные стоимости, и тот платеж считается большим, у которого больше современная стоимость. Иногда возникает необходимость в определении критической ставки /кр, при которой два рассматриваемых платежа оказываются равными. Рассмотрим два варианта. Для простых процентов критическая ставка находится из уравнения эквивалентности, получаемого путем приравнивания современных стоимостей первого и второго платежей: Пример. Первый платеж, равный 900 руб., должен быть выплачен через 30 дней, а второй, равный 920 руб., — через 270 дней. Определить критическую ставку при базе сравнения К = 360. Решение. Критическая ставка, при которой платежи эквивалентны, определяется по формуле Для сложных процентов уравнение эквивалентности имеет вид: Пример. Первый платеж, равный 9000 руб., должен быть выплачен через 2 года, а второй, равный 12 000 руб., — через 5 лет. Определить критическую ставку. Решение. Критическая ставка, при которой платежи эквивалентны, определяется по формуле (3.18): |