РП алгебра. Алгебра 7-9 классы. Учебный план на изучение алгебры в 79 классах отводит 3 учебных часа в неделю, 102 учебных часа в год. Содержание учебного курса "алгебра" 7 класс
Скачать 41.24 Kb.
|
МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ Согласно учебному плану в 7-9 классе изучается учебный курс «Алгебра», который включает следующие основные разделы содержания: «Числа и вычисления», «Алгебраические выражения», «Уравнения и неравенства», «Функции». Учебный план на изучение алгебры в 7-9 классах отводит 3 учебных часа в неделю, 102 учебных часа в год. СОДЕРЖАНИЕ УЧЕБНОГО КУРСА "АЛГЕБРА" 7 класс Числа и вычисления Рациональные числа. Дроби обыкновенные и десятичные, переход от одной формы записи дробей к другой. Понятие рационального числа, запись, сравнение, упорядочивание рациональных чисел. Арифметические действия с рациональными числами. Решение задач из реальной практики на части, на дроби. Степень с натуральным показателем: определение, преобразование выражений на основе определения, запись больших чисел. Проценты, запись процентов в виде дроби и дроби в виде процентов. Три основные задачи на проценты, решение задач из реальной практики. Применение признаков делимости, разложение на множители натуральных чисел. Реальные зависимости, в том числе прямая и обратная пропорциональности. Алгебраические выражения Переменные, числовое значение выражения с переменной. Допустимые значения переменных. Представление зависимости между величинами в виде формулы. Вычисления по формулам. Преобразование буквенных выражений, тождественно равные выражения, правила преобразования сумм и произведений, правила раскрытия скобок и приведения подобных слагаемых. Свойства степени с натуральным показателем. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Разложение многочленов на множители. Уравнения Уравнение, корень уравнения, правила преобразования уравнения, равносильность уравнений. Линейное уравнение с одной переменной, число корней линейного уравнения, решение линейных уравнений. Составление уравнений по условию задачи. Решение текстовых задач с помощью уравнений. Линейное уравнение с двумя переменными и его график. Система двух линейных уравнений с двумя переменными. Решение систем уравнений способом подстановки. Примеры решения текстовых задач с помощью систем уравнений. Координаты и графики. Функции Координата точки на прямой. Числовые промежутки. Расстояние между двумя точками координатной прямой. Прямоугольная система координат, оси Ox и Oy. Абсцисса и ордината точки на координатной плоскости. Примеры графиков, заданных формулами. Чтение графиков реальных зависимостей. Понятие функции. График функции. Свойства функций. Линейная функция, её график. График функции y= IхI. Графическое решение линейных уравнений и систем линейных уравнений. 8 класс Числа и вычисления Квадратный корень из числа. Понятие об иррациональном числе. Десятичные приближения иррациональных чисел. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям. Действительные числа. Степень с целым показателем и её свойства. Стандартная запись числа. Алгебраические выражения Квадратный трёхчлен; разложение квадратного трёхчлена на множители. Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Рациональные выражения и их преобразование. Уравнения и неравенства Квадратное уравнение, формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Простейшие дробно-рациональные уравнения. Графическая интерпретация уравнений с двумя переменными и систем линейных уравнений с двумя переменными. Примеры решения систем нелинейных уравнений с двумя переменными. Решение текстовых задач алгебраическим способом. Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Системы линейных неравенств с одной переменной. Функции Понятие функции. Область определения и множество значений функции. Способы задания функций. График функции. Чтение свойств функции по её графику. Примеры графиков функций, отражающих реальные процессы. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики. Функции y = x², y = x³, у=√х, y= IхI. Графическое решение уравнений и систем уравнений. 9 класс Числа и вычисления Действительные числа. Рациональные числа, иррациональные числа, конечные и бесконечные десятичные дроби. Множество действительных чисел; действительные числа как бесконечные десятичные дроби. Взаимно однозначное соответствие между множеством действительных чисел и координатной прямой. Сравнение действительных чисел, арифметические действия с действительными числами. Измерения, приближения, оценки. Размеры объектов окружающего мира, длительность процессов в окружающем мире. Приближённое значение величины, точность приближения. Округление чисел. Прикидка и оценка результатов вычислений. Уравнения и неравенства Уравнения с одной переменной. Линейное уравнение. Решение уравнений, сводящихся к линейным. Квадратное уравнение. Решение уравнений, сводящихся к квадратным. Биквадратное уравнение. Примеры решения уравнений третьей и четвёртой степеней разложением на множители. Решение дробно-рациональных уравнений. Решение текстовых задач алгебраическим методом. Системы уравнений. Уравнение с двумя переменными и его график. Решение систем двух линейных уравнений с двумя переменными. Решение систем двух уравнений, одно из которых линейное, а другое — второй степени. Графическая интерпретация системы уравнений с двумя переменными. Решение текстовых задач алгебраическим способом. Неравенства Числовые неравенства и их свойства. Решение линейных неравенств с одной переменной. Решение систем линейных неравенств с одной переменной. Квадратные неравенства. Графическая интерпретация неравенств и систем неравенств с двумя переменными. Функции Квадратичная функция, её график и свойства. Парабола, координаты вершины параболы, ось симметрии параболы. Графики функций: y = kx, y = kx + b, y=k/x. У=√х, y=x³. y = I х I и их свойства. Числовые последовательности Определение и способы задания числовых последовательностей. Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена. Арифметическая и геометрическая прогрессии. Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n членов. Изображение членов арифметической и геометрической прогрессий точками на координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты. ПЛАНИРУЕМЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ Освоение учебного курса «Алгебры» должно обеспечивать достижение на уровне основного общего образования следующих личностных, метапредметных и предметных образовательных результатов: ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ Личностные результаты освоения программы учебного курса «Алгебра» характеризуются: Патриотическое воспитание: проявлением интереса к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках и прикладных сферах. Гражданское и духовно-нравственное воспитание: готовностью к выполнению обязанностей гражданина и реализации его прав, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и пр.); готовностью к обсуждению этических проблем, связанных с практическим применением достижений науки, осознанием важности мораль- но-этических принципов в деятельности учёного. Трудовое воспитание: установкой на активное участие в решении практических задач математической направленности, осознанием важности математического образования на протяжении всей жизни для успешной профессиональной деятельности и развитием необходимых умений; осознанным выбором и построением индивидуальной траектории образования и жизненных планов с учётом личных интересов и общественных потребностей. Эстетическое воспитание: способностью к эмоциональному и эстетическому восприятию математических объектов, задач, решений, рассуждений; умению видеть математические закономерности в искусстве. Ценности научного познания: ориентацией в деятельности на современную систему научных представлений об основных закономерностях развития человека, природы и общества, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации; овладением языком математики и математической культурой как средством познания мира; овладением простейшими навыками исследовательской деятельности. Физическое воспитание, формирование культуры здоровья и эмоционального благополучия: готовностью применять математические знания в интересах своего здоровья, ведения здорового образа жизни (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность); сформированностью навыка рефлексии, признанием своего права на ошибку и такого же права другого человека. Экологическое воспитание: ориентацией на применение математических знаний для решения задач в области сохранности окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды; осознанием глобального характера экологических проблем и путей их решения. Личностные результаты, обеспечивающие адаптацию обучающегося к изменяющимся условиям социальной и природной среды: готовностью к действиям в условиях неопределённости, повышению уровня своей компетентности через практическую деятельность, в том числе умение учиться у других людей, приобретать в совместной деятельности новые знания, навыки и компетенции из опыта других; необходимостью в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы об объектах и явлениях, в том числе ранее не известных, осознавать дефициты собственных знаний и компетентностей, планировать своё развитие; способностью осознавать стрессовую ситуацию, воспринимать стрессовую ситуацию как вызов, требующий контрмер, корректировать принимаемые решения и действия, формулировать и оценивать риски и последствия, формировать опыт. МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ Метапредметные результаты освоения программы учебного курса «Алгебра» характеризуются овладением универсальными познавательными действиями, универсальными коммуникативными действиями и универсальными регулятивными действиями. 1) Универсальные познавательные действия обеспечивают формирование базовых когнитивных процессов обучающихся (освоение методов познания окружающего мира; применение логических, исследовательских операций, умений работать с информацией). Базовые логические действия: выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями; формулировать определения понятий; устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа; воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие; условные; выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и противоречий; делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии; разбирать доказательства математических утверждений (прямые и от противного), проводить самостоятельно несложные доказательства математических фактов, выстраивать аргументацию, приводить примеры и контрпримеры; обосновывать собственные рассуждения; выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев). Базовые исследовательские действия: использовать вопросы как исследовательский инструмент познания; формулировать вопросы, фиксирующие противоречие, проблему, самостоятельно устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение; проводить по самостоятельно составленному плану несложный эксперимент, небольшое исследование по установлению особенностей математического объекта, зависимостей объектов между собой; самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений; прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях. Работа с информацией: выявлять недостаточность и избыточность информации, данных, необходимых для решения задачи; выбирать, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления; выбирать форму представления информации и иллюстрировать решаемые задачи схемами, диаграммами, иной графикой и их комбинациями; оценивать надёжность информации по критериям, предложенным учителем или сформулированным самостоятельно. Общение: воспринимать и формулировать суждения в соответствии с условиями и целями общения; ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат; в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения; сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; в корректной форме формулировать разногласия, свои возражения; представлять результаты решения задачи, эксперимента, исследования, проекта; самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории. Сотрудничество: понимать и использовать преимущества командной и индивидуальной работы при решении учебных математических задач; принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы; обобщать мнения нескольких людей; участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые штурмы и др.); выполнять свою часть работы и координировать свои действия с другими членами команды; оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия. Самоорганизация: самостоятельно составлять план, алгоритм решения задачи (или его часть), выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации. Самоконтроль: владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи; предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, найденных ошибок, выявленных трудностей; оценивать соответствие результата деятельности поставленной цели и условиям, объяснять причины достижения или недостижения цели, находить ошибку, давать оценку приобретённому опыту. ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ Освоение учебного курса «Алгебра» 7 класс должно обеспечивать достижение следующих предметных образовательных результатов: Числа и вычисления Находить значения числовых выражений; применять разнообразные способы и приёмы вычисления значений дробных выражений, содержащих обыкновенные и десятичные дроби. Переходить от одной формы записи чисел к другой (преобразовывать десятичную дробь в обыкновенную, обыкновенную в десятичную, в частности в бесконечную десятичную дробь). Сравнивать и упорядочивать рациональные числа. Округлять числа. Выполнять прикидку и оценку результата вычислений, оценку значений числовых выражений. Выполнять действия со степенями с натуральными показателями. Применять признаки делимости, разложение на множители натуральных чисел. Решать практико-ориентированные задачи, связанные с отношением величин, пропорциональностью величин, процентами; интерпретировать результаты решения задач с учётом ограничений, связанных со свойствами рассматриваемых объектов. Алгебраические выражения Использовать алгебраическую терминологию и символику, применять её в процессе освоения учебного материала. Находить значения буквенных выражений при заданных значениях переменных. Выполнять преобразования целого выражения в многочлен приведением подобных слагаемых, раскрытием скобок. Выполнять умножение одночлена на многочлен и многочлена на многочлен, применять формулы квадрата суммы и квадрата разности. Осуществлять разложение многочленов на множители с помощью вынесения за скобки общего множителя, группировки слагаемых, применения формул сокращённого умножения. Применять преобразования многочленов для решения различных задач из математики, смежных предметов, из реальной практики. Использовать свойства степеней с натуральными показателями для преобразования выражений. Уравнения и неравенства Решать линейные уравнения с одной переменной, применяя правила перехода от исходного уравнения к равносильному ему. Проверять, является ли число корнем уравнения. Применять графические методы при решении линейных уравнений и их систем. Подбирать примеры пар чисел, являющихся решением линейного уравнения с двумя переменными. Строить в координатной плоскости график линейного уравнения с двумя переменными; пользуясь графиком, приводить примеры решения уравнения. Решать системы двух линейных уравнений с двумя переменными, в том числе графически. Составлять и решать линейное уравнение или систему линейных уравнений по условию задачи, интерпретировать в соответствии с контекстом задачи полученный результат. Координаты и графики. Функции Изображать на координатной прямой точки, соответствующие заданным координатам, лучи, отрезки, интервалы; за писывать числовые промежутки на алгебраическом языке. Отмечать в координатной плоскости точки по заданным ко ординатам; строить графики линейных функций. Строить график функции y = I х I. Описывать с помощью функций известные зависимости между величинами: скорость, время, расстояние; цена, количество, стоимость; производительность, время, объём работы. Находить значение функции по значению её аргумента. Понимать графический способ представления и анализа информации; извлекать и интерпретировать информацию из графиков реальных процессов и зависимостей. Освоение учебного курса «Алгебра» 8 класс должно обеспечивать достижение следующих предметных образовательных результатов: Числа и вычисления Использовать начальные представления о множестве действительных чисел для сравнения, округления и вычислений; изображать действительные числа точками на координатной прямой. Применять понятие арифметического квадратного корня; находить квадратные корни, используя при необходимости калькулятор; выполнять преобразования выражений, содержащих квадратные корни, используя свойства корней. Использовать записи больших и малых чисел с помощью десятичных дробей и степеней числа 10. Алгебраические выражения Применять понятие степени с целым показателем, выполнять преобразования выражений, содержащих степени с целым показателем. Выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями. Раскладывать квадратный трёхчлен на множители. Применять преобразования выражений для решения различных задач из математики, смежных предметов, из реальной практики. Уравнения и неравенства Решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух уравнений с двумя переменными. Проводить простейшие исследования уравнений и систем уравнений, в том числе с применением графических представлений (устанавливать, имеет ли уравнение или система уравнений решения, если имеет, то сколько, и пр.). Переходить от словесной формулировки задачи к её алгебраической модели с помощью составления уравнения или системы уравнений, интерпретировать в соответствии с контекстом задачи полученный результат. Применять свойства числовых неравенств для сравнения, оценки; решать линейные неравенства с одной переменной и их системы; давать графическую иллюстрацию множества решений неравенства, системы неравенств. Функции Понимать и использовать функциональные понятия и язык (термины, символические обозначения); определять значение функции по значению аргумента; определять свойства функции по её графику. Строить графики элементарных функций вида y = k/x , y = x², y= x³, у=√х, y= IхI; описывать свойства числовой функции по её графику. Освоение учебного курса «Алгебра» 9 класс должно обеспечивать достижение следующих предметных образовательных результатов: Числа и вычисления Сравнивать и упорядочивать рациональные и иррациональные числа. Выполнять арифметические действия с рациональными числами, сочетая устные и письменные приёмы, выполнять вычисления с иррациональными числами. Находить значения степеней с целыми показателями и корней; вычислять значения числовых выражений. Округлять действительные числа, выполнять прикидку результата вычислений, оценку числовых выражений. Уравнения и неравенства Решать линейные и квадратные уравнения, уравнения, сводящиеся к ним, простейшие дробно-рациональные уравнения. Решать системы двух линейных уравнений с двумя переменными и системы двух уравнений, в которых одно уравнение не является линейным. Решать текстовые задачи алгебраическим способом с помощью составления уравнения или системы двух уравнений с двумя переменными. Проводить простейшие исследования уравнений и систем уравнений, в том числе с применением графических представлений (устанавливать, имеет ли уравнение или система уравнений решения, если имеет, то сколько, и пр.). Решать линейные неравенства, квадратные неравенства; изображать решение неравенств на числовой прямой, записывать решение с помощью символов. Решать системы линейных неравенств, системы неравенств, включающие квадратное неравенство; изображать решение системы неравенств на числовой прямой, записывать решение с помощью символов. Использовать неравенства при решении различных задач. Функции Распознавать функции изученных видов. Показывать схематически расположение на координатной плоскости графиков функций вида: y = kx, y = kx + b, y = k/х, y=a x² + b x + c c, y = x³, у=√х, y = I х I в зависимости от значений коэффициентов; описывать свойства функций. Строить и изображать схематически графики квадратичных функций, описывать свойства квадратичных функций по их графикам. Распознавать квадратичную функцию по формуле, приводить примеры квадратичных функций из реальной жизни, физики, геометрии. Арифметическая и геометрическая прогрессии Распознавать арифметическую и геометрическую прогрессии при разных способах задания. Выполнять вычисления с использованием формул n-го члена арифметической и геометрической прогрессий, суммы первых n членов. Изображать члены последовательности точками на координатной плоскости. Решать задачи, связанные с числовыми последовательностями, в том числе задачи из реальной жизни (с использованием калькулятора, цифровых технологий). Тематическое планирование 7 класса
Тематическое планирование 8 класса
Тематическое планирование 9 класса
|