Главная страница

ФГОС. Практическая работа 5. Уравнения


Скачать 68.7 Kb.
НазваниеУравнения
Дата03.06.2022
Размер68.7 Kb.
Формат файлаdocx
Имя файлаПрактическая работа 5.docx
ТипУрок
#568324

Урок по теме: Уравнения

Класс 5

УМК Мерзляк, А. Г. Математика

Цель урока:

Создать условия для закрепления навыков решения уравнений с использованием правил нахождения неизвестного компонента действий сложения и вычитания, сформировать начальные навыки решения текстовых задач с помощью уравнений.

Задачи урока:

Создать условия для формирования навыков решения уравнений с использованием правил нахождения неизвестного компонента действий сложения и вычитания, сформировать начальные навыки решения текстовых задач с помощью уравнений, формирования умения соотносить полученный результат с поставленной целью.
Тип урока: Закрепление новых знаний и способов действий.

Этап урока

Деятельность учителя

Деятельность учеников

Планируемые результаты

Универсальные учебные действия

предметные

1.Орг. момент

Приветствует учащихся; проверяет готовность кабинета и учащихся к уроку, организация внимания детей, объявление темы урока.

Оформление карты самооценки

Приветствуют учителя, подготавливаются к уроку, включаются в деловой ритм урока.

Оформляют карту самооценки: ФИ учащегося, класс

Коммуникативные: планирование учебного сотрудничества с учителем и сверстниками.

Регулятивные: организация своей учебной деятельности.

Личностные: мотивация учения




2 Целеполагание

Объявление темы урока.

Вопрос к учащимся: Какую цель каждый из вас ставит перед собой?

Записывают тему урока.

Отвечают на вопросы учителя

коммуникативные: умение слушать, оформлять свои мысли в устной форме, анализировать, строить высказывания, формулировать тему и цель урока.

Уметь выделять неизвестный компонент арифметических действий (сложения и вычитания) и находить его значение

4. Актуализация знаний, умений и навыков.

Вопросы к учащимся: какие знания, полученные вами на прошлых уроках, нам пригодятся на уроке? Давайте повторим изученный материал.

1) Что значит решить уравнение?

2) Какое число называют корнем уравнения?
3) Как найти неизвестное слагаемое, вычитаемое, уменьшаемое.



Выполняют задание.

5. Закрепление, решение уравнений

Формирование новых знаний и способов действий.

А теперь вспомним, как решать уравнения, содержащее выражение с неизвестным числом в скобках

1) (х-115)+218=314

2) 412-(х-218)=115

3)(х+57)-84=312

Каков алгоритм решения?

Решают уравнения, проговаривая алгоритм решения


Регулятивные: уметь формулировать учебную задачу на основе соотнесения того, что уже известно; определять последовательность промежуточных целей с учетом конечного результата.

Познавательные: осознанно и произвольно строить речевое высказывание.

Личностные: осознать ответственность за общее дело


Знать определение уравнения, корня уравнения, что значить решить уравнение; правила сложения и вычитания. Уметь выделять неизвестный компонент арифметических действий и находить его значение

6. Физкультминутка

Сменить деятельность, обеспечить эмоциональную разгрузку учащихся.

Давайте немного отдохнём.

Примеры на доске (правильно -руки вверх, неправильно - руки в стороны)

14 + х = 32 (х = 18)

37 – х = 16 (х = 21)

24 / х = 6 (х = 4)

7 * х = 48 (х = 8)


Учащиеся поднимаются с мест и повторяют действия за учителем. Учащиеся сменили вид деятельности и готовы продолжить работу







7. Актуализация и фиксирование индивидуального затруднения в пробном
действии

Выберите уравнение, с помощью которого можно решить задачу:


При выполнении данного задания у вас возникло затруднение? Какое?

Чему нужно научиться при решении задач такого типа?

Пытаются выполнить задание
Отвечают на вопросы учителя
Составлять уравнение по условию задачи

Познавательные: поиск и выделение необходимой информации; строят свои высказывания, формулируют вывод на основе анализа

Регулятивные: выделение и осознание того, что уже пройдено, фиксация индивидуального затруднения, пути решения проблемы

Коммуникативные: выражение своих мыслей, аргументация своего мнения, уважение чужой точки зрения

Личностные: смыслообразование





8. Построение проекта выхода из затруднения

При решении задач в математике бывает удобнее использовать алгебраический способ решения задачи, т.е. с помощью уравнения. В этом случае, как правило, буквой обозначается то, что надо найти в задаче.

При решении задач такого типа можно воспользоваться таблицей:

Задум.число

Действия с числом

Результат

х

+45

+28


(х+45)+28=135

Решим уравнение

(х+45)+28=135

х+45=135-28

х+45=107

х=107-45

х=62

Ответ: задуманное число 62.

Под руководством учителя выполняют составленный план действий. Отвечают на вопросы учителя. Фиксируют новое знание в речи и знаках

Познавательные: уметь добывать новые знания (находить ответы на вопросы, используя учебник, свой жизненный опыт и информацию, полученную на уроке).

Коммуникативные: уметь оформлять свои мысли в устной форме, слушать и понимать речь других.

Регулятивные: уметь работать по коллективно составленному плану, проговаривать последовательность действий на уроке

Уметь решать уравнения, задачи с помощью уравнений

9. Первичное закрепление с проговариванием во внешней речи (Усвоение обучающимися нового способа действия при решении типовых задач)

Решим еще 1 задачу с помощью уравнения:

У Пети на карточке было 470 рублей. В магазине он купил 2 бутылки лимонада и расплатился картой. А мама ему переслала на карту 200 рублей. После чего у него осталось 520 рублей. Сколько стоит бутылка лимонада?
Организует подведение итогов по обозначенным вопросам. Корректирует ответы обучающихся

Под руководством учителя выполняют составленный план действий. Отвечают на вопросы учителя. Фиксируют новое знание в речи и знаках

Познавательные: уметь добывать новые знания.

Коммуникативные: уметь оформлять свои мысли в устной форме, слушать и понимать речь других.

Регулятивные: уметь работать по коллективно составленному плану, проговаривать последовательность действий на уроке

Уметь решать задачи с помощью уравнений

10. Самостоятельная работа с самопроверкой по эталону

Организует самостоятельную работу по вариантам с самопроверкой по эталону (приложение 1-2)



Самостоятельно выполняют предложенные задания по вариантам.

Выполняют самопроверку по предложенному эталону

Коммуникативные:

Планирование учебного сотрудничества

Познавательные:

- поиск и выделение необходимой информации


Уметь решать уравнения и задачи с помощью уравнений

11. Рефлексия (Подведение итогов урока).

-Подведем итог работы на уроке.

- Какую цель мы ставили? Достигли ли цели? Назовите тему урока.

- Расскажите, чему вы научились.

- Оцените свою деятельность на уроке (работа с листом самооценки).


Учащиеся отвечают на вопросы учителя. Рассказывают, что узнали. Осуществляют самооценку

Регулятивные: уметь оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки.

Личностные: понимать причины успеха (неуспеха) в учебной деятельности




12. Домашнее задание

Домашнее задание:

(18 + х)-3 = 27

(16 + х)+17 = 45

(29 – х)*2 = 16

(64 – х):4 = 12

36 : х+3 = 6

56 : х-7 = 7

6 * х-12 = 48

9 * х-14 = 56


Записывают д/з








Приложение 1 (самостоятельная работа)

Вариант 1

№1. Число 7 является корнем уравнения

а) 15х = 105 б) 7 + х = 0 в) 3(х + 5) + 21

№2. Неизвестное слагаемое в уравнении

х + 605 = 700 равно:

а) 1305 б) 95 в) 105

№3. Неизвестное вычитаемое в уравнении

600 - у = 83 равно:

а) 683 б) 517 в) 399

№4. В корзине лежали грибы. После того, как нашли еще 12 грибов, в корзине их стало 71. Сколько грибов лежало в корзине первоначально? Уравнение, составленное для решения этой задачи имеет вид

а) 71 - 12 = 59 б) х - 12 = 71 в) х + 12 = 71


Вариант 2

№1. Число 6 является корнем уравнения

а) 14х = 102 б) 6 + х = 0 в) 3(х + 5) + 33

№2. Неизвестное слагаемое в уравнении

515 + х = 600 равно:

а) 1115 б) 115 в) 85

№3. Неизвестное вычитаемое в уравнении

800 - у = 97 равно:

а) 697 б) 897 в) 703

№4. В лукошке лежали яблоки. После того, как сорвали еще 14 яблок, в лукошке их стало 85. Сколько яблок лежало в лукошке первоначально? Уравнение, составленное для решения этой задачи имеет вид

а) 85 - 14 = 71 б) х + 14 = 85 в) х - 14 = 85




Приложение 2 (эталон проверки самостоятельной работы)

Вариант 1

№1. Число 7 является корнем уравнения

а) 15х = 105 б) 7 + х = 0 в) 3(х + 5) + 21

№2. Неизвестное слагаемое в уравнении

х + 605 = 700 равно:

а) 1305 б) 95 в) 105

№3. Неизвестное вычитаемое в уравнении

600 - у = 83 равно:

а) 683 б) 517 в) 399

№4. В корзине лежали грибы. После того, как нашли еще 12 грибов, в корзине их стало 71. Сколько грибов лежало в корзине первоначально? Уравнение, составленное для решения этой задачи имеет вид

а) 71 - 12 = 59 б) х - 12 = 71 в) х + 12 = 71


Вариант 2

№1. Число 6 является корнем уравнения

а) 14х = 102 б) 6 + х = 0 в) 3(х + 5) + 33

№2. Неизвестное слагаемое в уравнении

515 + х = 600 равно:

а) 1115 б) 115 в) 85

№3. Неизвестное вычитаемое в уравнении

800 - у = 97 равно:

а) 697 б) 897 в) 703

№4. В лукошке лежали яблоки. После того, как сорвали еще 14 яблок, в лукошке их стало 85. Сколько яблок лежало в лукошке первоначально? Уравнение, составленное для решения этой задачи имеет вид

а) 85 - 14 = 71 б) х + 14 = 85 в) х - 14 = 85



написать администратору сайта