Главная страница
Навигация по странице:

  • 48.20 Отделы вегетативной НС, относительный физиологический антагонизм и биологический синергизм их влияний на иннервируемые органы.

  • 49.21 Регуляция вегетативных функций (КБП, либмическая система, гипоталамус) организма. Их роль в вегетативном обеспечении целенаправленного поведения.

  • 50.1 Определение гормонов,их образование и секреция. Действие на клетки и ткани. Классификация гормонов по разным признакам.

  • 51.2 Гипоталамо-гипофизарная система, ее функциональные связи. Транс и пара гипофизарная регуляция эндокринных желез. Механизм саморегуляции в деятельности желез внутренней секреции.

  • 1. 1Роль физиологии в материалистическом понимании сущности жизни. Значение работ И. М. Сеченова и И. П. Павлова в создании материалистических основ физиологии


    Скачать 3.27 Mb.
    Название1. 1Роль физиологии в материалистическом понимании сущности жизни. Значение работ И. М. Сеченова и И. П. Павлова в создании материалистических основ физиологии
    АнкорObshaya_ShIZA.doc
    Дата28.01.2017
    Размер3.27 Mb.
    Формат файлаdoc
    Имя файлаObshaya_ShIZA.doc
    ТипДокументы
    #257
    страница8 из 26
    1   ...   4   5   6   7   8   9   10   11   ...   26

    47.19 Структурно-функциональные особенности вегетативной нервной системы. Медиаторы вегетативной НС, основные виды рецепторных субстанций.

    На основании структурно-функциональных свойств автономную нервную систему принято делить на симпатическую, парасимпатическую и метасимпатическую части. Из них первые две имеют центральные структуры и периферический нервный аппарат, метасимпатическая же часть целиком лежит на периферии в стенках внутренних органов. Дуга автономного рефлекса состоит из трех звеньев: чувствительного (афферентного, сенсорного), ассоциативного (вставочного) и эффекторного. В зависимости от уровня замыкания, т. е. расположения ассоциативного звена, различают местные, или ганглионарные, спинальные, бульварные и т. д. рефлекторные дуги.

    Наряду с общим для обеих (автономной и соматической) систем звеном существует и собственный афферентный путь автономной нервной системы, называемый висцеральным. Он создает основу для путей местных рефлексов, осуществляемых неза­висимо, без участия ЦНС. По локализации клеточных тел чувствительных нейронов, по ходу и длине отростков их разделяют на три группы. В первую группу объединены клетки, тела которых локализуются в узлах солнечного и нижнего брыжеечного сплетений. Один из их длинных отростков направляется на периферию, другой в сторону спинного мозга. Клетки второй группы характеризуются тем, что их длинный отросток идет к рабочему органу, короткие распределяются в самом ганглии и синаптически контактируют с вставочным или эффекторным нейронами. Висцеральные чувствительные клетки третьей группы отличаются тем, что их тела и короткие отростки располагаются в интрамуральных узлах, длинные же отростки в составе соответствующих нервов достигают симпатических узлов, где и происходит переключение на ассоциативный и моторный (эфферентный) нейрон.

    Висцеральная чувствительность обусловлена активностью пяти отдельных типов интероцепторов: механо-, хемо-, термо-, осмо- и ноцицепторов, называемых специфическими. Из них наиболее распространенными являются механорецепторы.

    Среди механорецепторов внутренних органов известны рецепторы двух типов: быстро- и медленноадаптирующиеся. Быстроадаптирующиеся механорецепторы характеризуются высоким порогом возбуждения и встречаются в основном в слизистой оболочке и серозном слое висцеральных органов и связаны преимущественно с миелиновыми волокнами. Характерной чертой быстроадаптирующихся рецепторов являются исключительная чувствительность к динамической фазе движения и сокращения. Для медленноадаптирующихся механорецепторов, наоборот, характерна генерация сигналов в течение длительного периода раздражения или после его окончания. Эти рецепторы имеются во всех внутренних органах и характеризуются низким порогом возбуждения. Такая особенность позволяет им быть спонтанно-активными и направлять в нервные центры разнообразную информацию о сокращении, расслаблении, растяжении, смещении висцеральных органов. Медленноадаптирующиеся рецепторы связаны с тонкими миелинизированными и безмиелиновыми нервными волокнами.

    Хеморецепторы активируются при изменении химического состава ткани, например напряжения СО2 и О2 в крови. В органах пищеварения выделены специальные кислото- и щелочечувствительные рецепторы, чувствительные к действию только аминокислот или аминокислот и глюкозы.

    Тепловые и холодовые терморецепторы также обнаружены по преимуществу в пищеварительном тракте. Осморецепторы, ионорецепторы (например, натриевые) висцеральных органов обнаружены в печени. Частота их разрядов находится в прямой зависимости от осмотического давления жидкости. Помимо специфических, имеются и рецепторы, воспринимающие раздражение любой модальности, будь то механическое, химическое, термическое, осмотическое.

    Переход нервного импульса с одного нейрона на другой или с нейронов на клетки исполнительных (эффекторных) органов осуществляется в местах контакта клеточных мембран, называемых синапсами (рисунок 1.5.19). Передача информации осуществляется специальными химическими веществами-посредниками (медиаторами), выделяемыми из нервных окончаний в синаптическую щель. В нервной системе эти вещества называют нейромедиаторами. Основными нейромедиаторами в вегетативной нервной системе являются ацетилхолин и норадреналин. Функционирование синапса:

    I - поступление нервного импульса; II - выделение медиатора в синаптическую щель; III - взаимодействие с рецепторами постсинаптической мембраны; IV - "судьба" медиатора в Синаптической щели - возвращение синапса в состояние покоя(1- обратный захват медиатора; 2 - разрушение медиатора ферментом; 3- возбуждение пресинаптических рецепторов).
    48.20 Отделы вегетативной НС, относительный физиологический антагонизм и биологический синергизм их влияний на иннервируемые органы.

    Делится на симпатическую, парасимпатическую и метасимпатическую.

    Симпатическая нервная система

    Функции сипматической нервной системы.

    Обеспечивает гомеостатические реакции. Активируется в состояние активности и при различных стрессовых состояниях организма.

    Адапционнотрофическая функция. Повышает уровень обменных процессов в органах и тканях (феномен Орбели-Пенецинского). Брали нервный мышечный препарат, после долгого раздражения моторного нерва, происходит утомление. Затем сразу же - раздражали симпатический нерв и снова - моторный. В результате - появилось мышечное сокращение. Это следствия усиления обменных процессо в мышце. При перерезке симпатического нерва - атрофия мышцы, трофические нервы кожи и слизистых, понижение чувствительности различных рецепторов и торможение обменных поцессов в центральной нервной системе.

    Парасимпатическая нервная система

    Функции парасимпатической нервной системы.

    Обеспечение гомеостатических реакций организма в состоянии покоя и реакций восстановительного характера.

    Обеспечивает защитные реакции организма (чихание, кашель, сужение зрачка).

    Опорожнение полых органов (желудочно-кишечного тракта, желчный, мочевой пузырь); расслабление сфинктеров и сокращение гладких мышц полых органов.

    Метасимпатическая нервная система

    Метасимпатическая нервная система - совокупность микроганглионарных образований, находящихся в стенке различных органов, характеризующихся двигательной активностью - метасимпатическая нервная система миокарда, желудочно-кишечного тракта, сосудов, мочевого пузыря, мочеточников.

    Микроганглии включают 3 вида нейронов: чувствительные, двигательные, вставочные.

    Значение метасимпатической нервной системы.

    Метасимпатическая нервная система образует местные рефлекторные реакции и включает в себя все компоненты рефлекторных дуг. Благодаря метасимпатической нервной системе внутренние органы могут работать без участия центральной нервной системы. Для изучения метасимпатической нервной системы брали изолированное сердце. В правое предсердие вводили балон с воздухом - растяжение предсердия - приводило к увеличению частоты сердечных сокращений. Внутреннюю поверхность сердца обработали анестетиком и повторили эксперимент - работа сердца не изменялась. Таким образом, внутри сердца есть рефлекторные дуги.

    Метасимпатическая нервная система обеспечивает передачу возбуждения с эсктраорганной нервной системы на ткань органа - таким образом метасимпатическая нервная система посредник между симпатической нервной системой (парасимпатической нервной системой) и тканью органа. Чаще на метасимпатическую нервную систему образует синапсы парасимпатическая нервная система, чем симпатическая нервная система.

    Метасимпатическая нервная система регулирует органный кровоток.

    49.21 Регуляция вегетативных функций (КБП, либмическая система, гипоталамус) организма. Их роль в вегетативном обеспечении целенаправленного поведения.

    Высшие центры регуляции вегетативных функций находятся в гипоталамусе. Однако, на вегетативные центры влияет КБП. Это влияние опосредуется лимбической системой и центрами гипоталамуса.

    Регуляция функций вегетативной нервной системой осуществляется по рефлекторному принципу. Т.е. раздражение периферических рецепторов приводит к возникновению нервных импульсов, которые после анализа и синтеза в вегетативных центрах поступают на эфферентные нейроны, а затем исполнительные органы. Поэтому все вегетативные рефлексы, в зависимости от участия рецепторного и эффекторного, звена делятся на следующие группы:

    1.Висцеро-висцеральные. Это рефлексы, которые возникают вследствие раздражения интерорецепторов внутренних органов и проявляются изменениями их функций. Рефлекс Гольца.

    2.Висцеро-дермальные. Раздражении интерорецепторов внутренних органов, приводит к изменению потоотделения, просвета сосудов кожи, кожной чувствительности.

    3.Сомато-висцеральные. Действие раздражителя на соматические рецепторы, например рецепторы кожи, приводит к изменению деятельности внутренних органов. К этой группе относится рефлекс Данини-Ашнера.

    4.Висцеро-соматические. Раздражение интерорецепторов вызывает изменение двигательных функций. Возбуждение хеморецепторов сосудов углекислым газом, способствует усилению сокращений межреберных дыхательных мышц.

    Высшие вегетативные центры находятся в гипоталамусе, его ядра осуществляют регуляцию сложных вегетативных функций, которые сочетаются с эмоциями, поведенческими реакциями. Деятельность гипоталамуса в свою очередь регулируется корой большого мозга, особенно корой лимбических отделов (сводчатая извилина).

    В регуляции вегетативных функций большое значение имеют лобные доли коры больших полушарий. Раздражение этих долей коры вызывает изменение дыхания, пищеварения, кровообращения и половой деятельности, поэтому считается, что в передних отделах коры больших полушарий находятся высшие центры вегетативной нервной системы.

    Центры В. н. с., обеспечивающие тонус кровеносных сосудов, расположены в ретикулярной формации продолговатого мозга и варолиева моста. Сосудосуживающие и ускоряющие ритм сердца центры, влияя на симпатическую нервную систему, поддерживают основной тонус сосудов, в меньшей мере — тонус сердца. Сосудорасширяющие и тормозящие ритм сердца центры действуют косвенно как через сосудосуживающий центр, который угнетают, так и путем стимулирования заднего двигательного ядра блуждающего нерва (в случае тормозного эффекта на сердце). На тонус сосудодвигательных (вазомоторных) центров влияют баро- и хеморецепторные стимулы, исходящие как из специфических рефлексогенных зон (каротидного синуса, эндокардоаортальной зоны и др.), так и из других образований. Этот тонус находится под контролем вышележащих центров в ретикулярной формации, в гипоталамусе, обонятельном мозге и коре головного мозга.

    В регуляции вегетативных функций большое значение имеют лобные доли коры больших полушарий. Раздражение некоторых участков этих долей коры вызывает изменение дыхания, пищеварения, кровообращения и половой деятельности, поэтому считается, что в передних отделах коры больших полушарий находятся высшие центры вегетативной нервной системы.

    Лимбическая система принимает участие в формировании эмоций и таких поведенческих реакций, в осуществлении которых имеет место ярко выражентый вегетативный компонент. Влияние висцерального мозга на функции органов, иннервируемых вегетативной нервной системой, осуществляется благодаря ее тесным связям с гипоталамусом.


    50.1 Определение гормонов,их образование и секреция. Действие на клетки и ткани. Классификация гормонов по разным признакам.

    Гормоны-Специфические регуляторы, которые секретируются эндокринными железами в кровь или лимфу, а затем попадают на клетки-мишени. Секреция гормонов – процесс освобождения гормонов из эндокринных клеток в межклеточные щели с дальнейшим их поступлением в кровь, лимфу. Секреция гормона строго специфична для каждой эндокринной железы. Секреторный процесс осуществляется как в покое, так и в условиях стимуляции. Секреция гормона происходит импульсивно, отдельными дискретными порциями. Импульсивный характер гормональной секреции объясняется циклическим характером процессов биосинтеза, депонирования и транспорта гормона. Секреция и биосинтез гормонов тесно взаимосвязаны друг с другом. Эта связь зависит от химической природы гормона и особенностей механизма секреции. Выделяют три механизма секреции:1) освобождение из клеточных секреторных гранул (секреция катехоламинов и белково-пептидных гормонов);2) освобождение из белоксвязанной формы (секреция тропных гормонов);3) относительно свободная диффузия через клеточные мембраны (секреция стероидов).Степень связи синтеза и секреции гормонов возрастает от первого типа к третьему. Гормоны, поступая в кровь, транспортируются к органам и тканям. Связанный с белками плазмы и форменными элементами гормон аккумулируется в кровяном русле, временно выключается из круга биологического действия и метаболических превращений. Неактивный гормон легко активируется и получает доступ к клеткам и тканям. Параллельно идут два процесса: реализация гормонального эффекта и метаболическая инактивация. В процессе обмена гормоны изменяются функционально и структурно. Подавляющая часть гормонов метаболизируется, и лишь незначительная их часть (0,5—10 %) выводятся в неизмененном виде. Метаболическая инактивация наиболее интенсивно протекает в печени, тонком кишечнике и почках. Продукты гормонального метаболизма активно выводятся с мочой и желчью, желчные компоненты окончательно выводятся каловыми массами через кишечник. Небольшая часть гормональных метаболитов выводится с потом и слюной.

    Влияние гормонов и нейромедиаторов на клетку осуществляется обычно по одному из трех путей: а) изменение распределения веществ в клетке; б) химическая модификация клеточных белков; в) индукция или репрессия процессов белкового синтеза. Одним из основных механизмов, лежащих в основе гормонального влияния на распределение) веществ в клетке, является изменение ионной проницаемости клеточных мембран. Ионные каналы, работа которых регулируется нейромедиаторами, представляют собой олигомерные белковые комплексы, пронизывающие клеточную мембрану. Свойства этих олигомерных образований таковы - молекула нейромедиатора, связываясь со специфическим участком на ионном канале, вызывает открывание или закрывание канала. Регуляторное влияние белково-пептидных гормонов, простагландинов, катехоламинов и др. опосредовано через систему вторичных посредников. В качестве последних могут выступать циклический АМФ (цАМФ), циклический ГМФ (цГМФ), инозитол-1,4,5-трифосфат, диацилглицерин или ионы Са2+. Диацилглицерин и инозитол-1,4,5-трифосфат образуются при активации фосфолипазы С, гидролизующейфосфоинозитиды. Образование этих посредников приводит к выходу ионов Са2+ из эндоплазматической сети и стимуляции протеинкиназы С.

    Классификация:По химической природе гормоны разделены на три группы:1) стероиды;2) полипептиды и белки с наличием углеводного компонента и без него;3) аминокислоты и их производные.

    Функциональная классификация гормонов: 1Эффекторные гормоны - гормоны, которые оказывают влияние непосредственно на орган-мишень. 2Тройные гормоны - гормоны, основной функцией которых является регуляция синтеза и выделения эффекторных гормонов. Выделяются аденогипофизом. 3Рилизинг-гормоны - гормоны, регулирующие синтез и выделение гормонов аденогипофиза, преимущественно тройных. Выделяются нервными клетками гипоталамуса.

    51.2 Гипоталамо-гипофизарная система, ее функциональные связи. Транс и пара гипофизарная регуляция эндокринных желез. Механизм саморегуляции в деятельности желез внутренней секреции.

    Гипоталамо-гипофизарную систему можно разделить на две основные части: гипоталамо-заднегипофизарную (нейрогипофизарную) систему, в которой вырабатываются висцеротропныенейрогормоны (вазопрессин и окситоцин), гипоталамо-переднегипофизарную систему, в которой вырабатываются гипофизарные факторы – либерины и статины. Кроме этих двух основных систем существует нейросекреторная иннервация нейронов вегетативных центров стволовой части мозга и лимбической системы. Проводящие нейросекрет волокна обнаружены и в других областях – в переднем, среднем и продолговатом мозгу.

    Гипоталамо-заднегипофизарная система состоит из крупных нейросекреторных клеток, которые у высших позвоночных располагаются в двух основных ядрах: супраоптическом и паравентрикулярном. Волокна, проводящие нейросекрет и составляющие гипоталамо-гипофизарный тракт, оканчиваются в нейрогемальном органе – нейрогипофизе, или задней доле гипофиза. В клетках этих ядер происходит выработка висцеротропных гормонов (ранее их называли нейрогипофизарными) - вазопрессина (антидиуретического гормона) и окситоцина. В супраоптическом ядре вырабатывается преимущественно вазопрессин, а в паравентрикулярном – больше окситоцина. Эти гормоны состоят из девяти аминокислот, т. е. являются нанопептидами.

    Гипоталамо-переднегипофизарная система -осуществление связей между гипоталамусом и гипофизом. В мелких нейросекреторных клетках гипоталамуса, располагающихся в так называемой гипофизотропной зоне, происходит выработка пептидных гормонов, которые регулируют функцию железистых клеток аденогипофиза. Гормоны, стимулирующие синтез и высвобождение гормонов гипофиза, называют рилизинг-гормонами или либеринами, а тормозящие эти процессы – ингибирующими гормонами (или факторами) или статинами. Аксоны нейросекреторных клеток оканчиваются в срединном возвышении, являющемся нейрогемальной областью гипоталамо-переднегипофизарной системы. Гормоны из гипофизотропной зоны поступают в аденогипофиз через воротные вены гипофиза.

    Трансгипофизарная регуляция является основной для щитовидной, половых и коры надпочечных желез. Она представляет собой трехступенчатый каскад усиления первичного регуляторного сигнала. Первая ступень включает образование в нейросекреторных клетках медиобазальной части подбугорьянанограммовых количеств олигопептидов, которые опускаются по аксонам до капилляров срединного возвышения и через венозные сосуды ножки гипофиза достигают аденогипофиза. Здесь они либо стимулируют, либо тормозят образование тропных гормонов. Стимулирующиеолигопептиды получили название либеринов или рилизинг. К их числу относятся тиреолиберин, гонадолиберины, соматолиберин и др. Тормозящие олигопептиды называют статинами, например тиростатин, соматостатин и др. Их соотношение между собой определяет образование соответствующего гормона.Вторая ступень начинается с образования в аденогипофизетропных гормонов (уже в микрограммовых количествах) - соматотропного (СТГ), или соматотропина, гонадотропных (ГТГ) и др. Эти тропные гормоны, действуя на соответствующие мишени, включают третью ступень. Из них тиреотропный, гонадотропные, адренокортикотропный гормоны стимулируют в соответствующих железах внутренней секреции образование гормонов, а СТГ вызывает в разных органах образование соматомединов - полипептидных гормонов, через которые и оказывает свое действие. Этих продуктов образуется уже намного больше. Они осуществляют генерализованное и относительно длительное влияние.

    Парагипофизарный путь является главным образом нервно-проводниковым. Через этот путь осуществляется секреторное, сосудистое и трофическое влияние центральной нервной системы на функцию желез внутренней секреции. Для мозгового слоя надпочечников, островков Лангерганса и паращитовидных желез это важнейший путь регуляции. В функции других желез играют важную роль оба пути регуляции. Так, например, функция щитовидной железы определяется не только выработкой тиреотропного гормона (ТТГ), но и симпатической импульсацией. Прямое раздражение симпатических нервов увеличивает поглощение йода железой, образование тиреоидных гормонов и их освобождение. Денервация яичников вызывает их атрофию и ослабляет реакцию на гонадотропные гормоны.
    1   ...   4   5   6   7   8   9   10   11   ...   26


    написать администратору сайта