1. 1Роль физиологии в материалистическом понимании сущности жизни. Значение работ И. М. Сеченова и И. П. Павлова в создании материалистических основ физиологии
Скачать 3.27 Mb.
|
57.1Понятие о системе крови(Ланг), ее свойства, состав ,функции.Состав крови. Основные физиологические константы крови и механизмы их поддержания. Ланг считал, что в систему крови входят кровь, органы кроветворения и кроверазрушения, а также аппарат регуляции. Кровь как ткань обладает следующими особенностями: 1) все ее составные части образуются за пределами сосудистого русла; 2) межклеточное вещество ткани является жидким; 3) основная часть крови находится в постоянном движении Кровь состоит из жидкой части — плазмы и форменных элементов — эритроцитов, лейкоцитов и тромбоцитов. У взрослого человека форменные элементы крови составляют около 40—48%, а плазма — 52—60. Основными функциями:1Транспортная функция. Кровь переносит необходимые для жизнедеятельности органов и тканей различные вещества, газы и продукты обмена Благодаря транспорту осуществляется дыхательная функция крови. Кровь осуществляет перенос гормонов, питательных веществ, продуктов обмена, ферментов, различных биологически активных веществ, солей, кислот, щелочей, катионов, анионов, микроэлементов и др. С транспортом связана и экскреторная функция крови — выделение из организма метаболитов, отслуживших свой срок или находящихся в данный момент в избытке веществ.2 Защитные функции. С наличием в крови лейкоцитов связана специфическая (иммунитет) и неспецифическая (главным образом фагоцитоз) защита организма. К защитным функциям относится сохранение циркулирующей крови в жидком состоянии и остановка кровотечения (гемостаз) в случае нарушения целостности сосудов.3Гуморальная регуляция деятельности организма. В первую очередь связана с поступлением в циркулирующую кровь гормонов, биологически активных веществ и продуктов обмена. Благодаря регуляторной функции крови осуществляется сохранение постоянства внутренней среды организма, водного и солевого баланса тканей и температуры тела, контроль за интенсивностью обменных процессов, регуляция гемопоэза и других физиологических функций. Основные константы крови:1Относительная плотность крови. Колеблется от 1,058 до 1,062 и зависит преимущественно от содержания эритроцитов. Относительная плотность плазмы крови в основном определяется концентрацией белков и составляет 1,029—1,032 . 2 Определяется по отношению к вязкости воды и соответствует 4,5—5,0. Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы.. Вязкость плазмы не превышает 1,8—2,2. При обильном белковом питании вязкость плазмы, а, следовательно, и крови может повышаться. 3. Осмотическим давлением называется сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более концентрированный раствор 0,56—0,58°С. 4Онкотическое давление.не превышает 30 мм рт.ст. Онкотическое давление в большей степени зависит от альбуминов. 5.Температура крови37—40°С 6.Общее количество крови в организме взрослого человека составляет в среднем 6—8%, или 1/13, массы тела, т. е. приблизительно 5—6 л. 58.2 Состав плазмы крови. Осмотическое давление крови ФС ,обеспечивающая постоянство осмотическое давления крови. В состав плазмы крови входят вода (90—92%) и сухой остаток (8—10%). Сухой остаток состоит из органических и неорганических веществ. К органическим веществам плазмы крови относятся: 1) белки плазмы — альбумины (около 4,5%), глобулины (2—3,5%), фибриноген (0,2—0,4%). Общее количество белка в плазме составляет 7—8%;2) небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатин, креатинин, аммиак). Общее количество небелкового азота в плазме (так называемого остаточного азота) составляет 11 —15 ммоль/л (30—40 мг%). При нарушении функции почек, выделяющих шлаки из организма, содержание остаточного азота в крови резко возрастает;3) безазотистые органические вещества: глюкоза — 4,4—6,65 ммоль/л (80—120 мг%), нейтральные жиры, липиды;4) ферменты и проферменты: некоторые из них участвуют в процессах свертывания крови и фибринолиза, в частности протромбин и профибринолизин. В плазме содержатся также ферменты, расщепляющие гликоген, жиры, белки и др.Неорганические вещества плазмы крови составляют около 1 % от ее состава. К этим веществам относятся преимущественно катионы — Ка+, Са2+, К+, Мg2+ и анионы Сl, НРO4, НСО3 Осмотическое давление крови. Осмотическим давлением называется сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более концентрированный раствор. Осмотическое давление крови вычисляют криоскопическим методом с помощью определения депрессии (точки замерзания), которая для крови составляет 0,56—0,58°С. Депрессия молярного раствора (раствор, в котором растворена 1 грамм-молекула вещества в 1 л воды) соответствует 1,86°С. Подставив значения в уравнение Клапейрона, легко рассчитать, что осмотическое давление крови равно приблизительно 7,6 атм. Осмотическое давление крови зависит в основном от растворенных в ней низкомолекулярных соединений, главным образом солей. Около 60% этого давления создается NaCl. Осмотическое давление в крови, лимфе, тканевой жидкости, тканях приблизительно одинаково и отличается постоянством. Даже в случаях, когда в кровь поступает значительное количество воды или соли, осмотическое давление не претерпевает существенных изменений. При избыточном поступлении в кровь вода быстро выводится почками и переходит в ткани и клетки, что восстанавливает исходную величину осмотического давления. Если же в крови повышается концентрация солей, то в сосудистое русло переходит вода из тканевой жидкости, а почки начинают усиленно выводить соли. Продукты переваривания белков, жиров и углеводов, всасывающиеся в кровь и лимфу, а также низкомолекулярные продукты клеточного метаболизма могут изменять осмотическое давление в небольших пределах. 59.3 Белки плазмы крови, их характеристика и функциональное значение .Онкотическое давление в плазме крови. Важнейшей составной частью плазмы являются белки, содержание которых составляет 7—8% от массы плазмы. Белки плазмы — альбумины, глобулины и фибриноген. К альбуминам относятся белки с относительно малой молекулярной массой (около 70 000), их 4— 5%, к глобулинам — крупномолекулярные белки (молекулярная масса до 450 000) — количество их доходит до 3%. На долю глобулярного белка фибриногена (молекулярная масса 340 000) приходится 0,2—0,4%. С помощью метода электрофореза, основанного на различной скорости движения белков в электрическом поле, глобулины могут быть разделены на α1-, α2- и γ-глобулины. Функции белков плазмы крови весьма разнообразны: белки обеспечивают онкотическое давление крови, от которого в значительной степени зависит обмен воды и растворенных в ней веществ между кровью и тканевой жидкостью; регулируют рН крови благодаря наличию буферных свойств; влияют на вязкость крови и плазмы, что чрезвычайно важно для поддержания нормального уровня кровяного давления, обеспечивают гуморальный иммунитет, ибо являются антителами (иммуноглобулинами); принимают участие в свертывании крови; способствуют сохранению жидкого состояния крови, так как входят в состав противосвертывающих веществ, именуемых естественными антикоагулянтами; служат переносчиками рада гормонов, липидов, минеральных веществ и др.; обеспечивают процессы репарации, роста и развития различных клеток организма. Онкотическое давление. Является частью осмотического и зависит от содержания крупномолекулярных соединений (белков) в растворе. Хотя концентрация белков в плазме довольно велика, общее количество молекул из-за их большой молекулярной массы относительно мало, благодаря чему онкотическое давление не превышает 30 мм рт.ст. Онкотическое давление в большей степени зависит от альбуминов (80% онкотического давления создают альбумины), что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме. Онкотическоедавление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровезамещающие растворы должны содержать в своем составе коллоидные вещества, способные удерживать воду. 60.4 pH крови ,физиологические механизмы ,поддерживающие постоянство кислотно-основного равновесия. В норме рН крови соответствует 7,36,. Колебания величины рН крови крайне незначительны. Так, в условиях покоя рН артериальной крови соответствует 7,4, а венозной — 7,34. В клетках и тканях рН достигает 7,2 и даже 7,0, что зависит от образования в них в процессе обмена веществ «кислых» продуктов метаболизма. При различных физиологических состояниях рН крови может изменяться как в кислую (до 7,3), так и в щелочную (до 7,5) сторону. Более значительные отклонения рН сопровождаются тяжелейшими последствиями для организма. Так, при рН крови 6,95 наступает потеря сознания, и если эти сдвиги в кратчайший срок не ликвидируются, то неминуема смерть. Если же концентрация ионов Н+ уменьшается и рН становится равным 7,7, то наступают тяжелейшие судороги (тетания), что также может привести к смерти. В процессе обмена веществ ткани выделяют в тканевую жидкость, а следовательно, и в кровь «кислые» продукты обмена, что должно приводить к сдвигу рН в кислую сторону. Так, в результате интенсивной мышечной деятельности в кровь человека может поступать в течение нескольких минут до 90 г молочной кислоты. Кроме того, в организме постоянство рН сохраняется за счет работы почек и легких, удаляющих из крови СО2, избыток солей, кислот и оснований (щелочей). Постоянство рН крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы. Самой мощной является буферная система гемоглобина. На ее долю приходится 75% буферной емкости крови. Эта система включает восстановленный гемоглобин (ННb) и калиевую соль восстановленного гемоглобина (КНb). Буферные свойства системы обусловлены тем, что КНb как соль слабой кислоты отдает ион К+ и присоединяет при этом ион Н+, образуяслабодиссоциированную кислоту. Карбонатная буферная система (H2CO3/NaHCO3) по своей мощности занимает второе место. Ее функции осуществляются следующим образом: NaHCO3 диссоциирует на ионы Na+ и НСОз-. Если в кровь поступает кислота более сильная, чем угольная, то происходит обмен ионами Na+ с образованием слабодиссоциированной и легко растворимой угольной кислоты, что предотвращает повышение концентрации ионов Н+ в крови. Увеличение же концентрации угольной кислоты приводит к ее распаду (это происходит под влиянием фермента карбоангидразы, находящегося в эритроцитах) на Н2О и СО2. Последний поступает в легкие и выделяется в окружающую среду. Если в кровь поступает основание, то она реагирует с угольной кислотой, образуя натрия гидрокарбонат (NaНСОз) и воду, что опять-таки препятствует сдвигу рН в щелочную сторону. 61.5 Эритроциты ,их функции. Методы подсчета. Виды гемоглобина, его соединения ,их физиологическое значение .Гемолиз. Эритроциты- это высокоспециализированные безъядерные клетки крови. Функции эритроцитов:1. Перенос кислорода от легких к тканям.2. Участие в транспорте СО2 от тканей к легким.3. Транспорт воды от тканей к легким, где она выделяется в виде пара.4. Участвуют в свертывании крови, выделяя эритроцитарные факторы свертывания.5. Переносят аминокислоты на своей поверхности.6. Участвуют в регуляции вязкости крови, вследствие пластичности. В результате их способности к деформации, вязкость крови в мелких сосудах меньше, чем крупных. В одном микролитре крови мужчин содержится 4,5-5,0 млн. эритроцитов (4,5-5,0 * 1012 л). Женщин – 3,7-4,7 млн. (3,7-4,7 * 1012 л). Подсчет количества эритроцитов производится в камере Горяева. Для этого кровь в специальном капилляре меланжере для эритроцитов смешивают с 3% раствором хлорида натрия в соотношении 1:100 или 1:200. Затем капелька этой смеси помещается в счетную камеру. Часть этих квадратов разделена на 16 маленьких. Каждая сторона малого квадрата имеет величину 0,05 мм. Следовательно, объем смеси над малым квадратом будет составлять 1/10 мм * 1/20 мм * 1/20 мм = 1/4000 мм3.После заполнения камеры, под микроскопом считают количество эритроцитов в 5-ти тех больших квадратах, которые разделены на маленькие, Т.е. в 80 маленьких. Затем рассчитывают количество эритроцитов в одном микролитре крови по формуле Х = 4000*а*в/б Где а – общее количество эритроцитов, полученное при подсчете.б – число малых квадратов в которых производился подсчет.в – разведение крови (1:100, 1:200).4000 – величина обратная объему жидкости на малым квадрате. Для быстрого подсчета, при большом количестве анализов, используют фотоэлектрическиеэритрогемометры. Принцип их действия основан на определении прозрачности взвеси эритроцитов с помощью пучка света проходящего от источника к светочувствительному датчику. Выделяют четыре формы гемоглобина:1) оксигемоглобин;2) метгемоглобин;3) карбоксигемоглобин;4) миоглобин. Оксигемоглобин содержит двухвалентное железо и способен связывать кислород. Он переносит газ к тканям и органам. При воздействии окислителей (перекисей, нитритов и т. д.) происходит переход железа из двухвалентного в трехвалентное состояние, за счет чего образуется метгемоглобин, который не вступает в обратимую реакцию с кислородом и обеспечивает его транспорт. Карбоксигемоглобин образует соединение с угарным газом. Он обладает высоким сродством с окисью углерода, поэтому комплекс распадается медленно. Это обусловливает высокую ядовитость угарного газа. Миоглобин по структуре близок к гемоглобину и находится в мышцах, особенно в сердечной. Он связывает кислород, образуя депо, которое используется организмом при снижении кислородной емкости крови. За счет миоглобина происходит обеспечение кислородом работающих мышц. Гемолиз это разрушение мембраны эритроцитов и выход гемоглобина в плазму. В результате кровь становится прозрачной. Различают следующие виды гемолиза. По месту возникновения:1. Эндогенный, т.е. в организме.2. Экзогенный, вне его. По характеру:1. Физиологический. Он обеспечивает разрушение старых и патологических форм эритроцитов. Имеется два механизма. Внутриклеточный гемолиз происходит в макрофагах селезенки, костного мозга, клетках печени. Внутрисосудистый, в мелких сосудах, из которых гемоглобин с помощью белка плазмы гаптоглобина переносится к клеткам печени. Там гем гемоглобина превращается в билирубин. В сутки разрушается около 6-7 г гемоглобина.2. Патологический. По механизму возникновения :1.ХимическийВозникает при воздействии на эритроциты веществ, растворяющих липиды мембраны. Это спирты, эфир, хлороформ, щелочи кислоты и т.д.. 2. Температурный. При низких температурах в эритроцитах образуются кристаллики льда, разрывающие их оболочку.3МеханическийНаблюдается при механических разрывах мембраны. Например, при встряхивании флакона с кровью или ее перекачивания аппаратом искусственного кровообращения.4. Биологический. Происходит при действии биологических факторов. Это гемолитические яды бактерий, насекомых, змей. В результате переливания несовместимой крови.5. Осмотический. Возникает в том случае, если эритроциты попали в среду с осмотическим давлением ниже, чем у крови. 62.6 Регуляция эритро и лейкопоэза. Для нормальногоэритропоэза необходимо железо. Последнее поступает в костный мозг при разрушении эритроцитов, из депо, а также с пищей и водой. Взрослому человеку для нормального эритропоэза требуется в суточном рационе 12—15 мг железа. Железо откладывается в различных органах и тканях, главным образом в печени и селезенке. Если железа в организм поступает недостаточно, то развивается железодефицитная анемия. Всасыванию железа в кишечнике способствует аскорбиновая кислота, переводящая Fe3+ в Fe2+, который сохраняет растворимость при нейтральных и щелочных значениях рН. На участке слизистой оболочки тонкой кишки имеются рецепторы, облегчающие переход железа в энтероцит, а оттуда в плазму. В слизистой оболочке тонкой кишки находится белок-переносчик железа — трансферрин. Он доставляет железо в ткани, имеющие трансферриновые рецепторы. В клетке комплекс трансферрина и железа распадается, и железо вступает в связь с другим белком-переносчиком — ферритином. Клетки-предшественники зрелых эритроцитов накапливают железо в ферритине. В дальнейшем оно используется, когда клетка начинает образовывать большое количество гемоглобина. Важным компонентом эритропоэза является медь, которая усваивается непосредственно в костном мозге и принимает участие в синтезе гемоглобина. Если медь отсутствует, то эритроциты созревают лишь до стадии ретикулоцита. Медь катализирует образование гемоглобина, способствуя включению железа в структуру гема. Недостаток меди приводит к анемии. Для нормального эритропоэза необходимы витамины и в первую очередь витамин B12 и фолиевая кислота. Для его образования необходим кобальт. В организм человека витамин B12 поступает с пищей — особенно его много в печени, мясе, яичном желтке. Для всасывания витамина В12 требуется внутренний фактор кроветворения, который носит наименование «гастромукопротеин». Это вещество является комплексным соединением, образующимся в желудке. Витамин В12 и фолиевая кислота принимают участие в синтезе глобина. Они обусловливают образование в эритробластах нуклеиновых кислот, являющихся одним из основных строительных материалов клетки. Особо важную роль в регуляции эритропоэза играют специфические вещества, получившие наименование эритропоэтины обнаружены в крови здоровых людей, что позволяет считать их физиологическими регуляторами эритропоэза. Эритропоэтины оказывают действие непосредственно на клетки-предшественники эритроидного ряда (КОЕ-Э – колониеобразующая единица эритроцитарная). Функции эритропоэтинов сводятся к следующему: 1) ускорение и усиление перехода стволовых клеток костного мозга в эритробласты; 2) увеличение числа митозов клеток эритроидного ряда; 3) исключение одного или нескольких циклов митотических делений; 4) ускорение созревания неделящихся клеток — нормобластов, ретикулоцитов. На эритропоэз действуют соединения, синтезируемые моноцитами, макрофагами, лимфоцитами и другими клетками, получившие название «интерлейкины Регуляция лейкопоэза.Важная роль в регуляции лейкопоэза отводится интерлейкинам. В частности, ИЛ-3 не только стимулирует гемопоэз, но и является фактором роста и развития базофилов. ИЛ-5 необходим для роста и развития эозинофилов. Многие интерлейкины (ИЛ-2, ИЛ-4, ИЛ-6, ИЛ-7 и др.) являются факторами роста и дифференцировки Т- и В-лимфоцитов Лейкоциты являются наиболее «подвижной» частью крови, быстро реагирующей на различные изменения в окружающей среде и организме развитием лейкоцитоза, что обеспечивается существованием клеточного резерва. Известны два типа гранулоцитарных резервов — сосудистый и костномозговой. Сосудистый гранулоцитарный резерв представляет собой большое количество гранулоцитов, расположенных вдоль стенок сосудистого русла, откуда они мобилизуются при повышении тонуса симпатического отдела автономной (вегетативной) нервной системы. Своеобразные изменения претерпевают лейкоциты в разные стадии адаптационного синдрома, что обусловлено действием гормонов гипофиза (АКТГ) и надпочечника (адреналина, кортизона, дезоксигидрокортизона). Уже через несколько часов после стрессорного воздействия развивается лейкоцитоз, который обусловлен выбросом нейтрофилов, моноцитов и лимфоцитов из депо крови. При этом число лейкоцитов не превышает 16—18 тыс. в 1 мкл. В стадии резистентности число и состав лейкоцитов мало отличаются от нормы. В стадии истощения развивается лейкоцитоз, сопровождающийся увеличением числа нейтрофилов и снижением числа лимфоцитов и эозинофилов. |