Главная страница
Навигация по странице:

  • 64.8 Сосудисто-тромбоцитарный гемостаз.

  • 65.9 Свертывающася,противосвертывающая и фибринолитическая система крови,как главные компоненты аппарата функциональной системы поддержания жидкого состояния крови

  • 66.10 Понятие о группах крови.системы АВО и резус фактора. Определение группы крови. Правила переливание крови.

  • 67.11Лимфа, ее состав, функции. Несосудистые жидкие среды,их роль в организме. Обмен воды между кровью и тканями.

  • 68.12 Лейкоциты и их виды. Методы подсчета. Лейкоцитарная формула.функции лейкоцитов.

  • 69.13Тромбоциты,колличество и функции в организме.

  • 70.1 Значение кровообращения для организма. Функциональная характеристика разных областей системы кровообращения.

  • 71.2 Сердце, значение его камер и клапанного аппарата.Кардиоцикл и его структура.

  • 72. Физиологические особенности и с-ва миокарда. Автоматия сердца.

  • 74.соотношение возбуждения, возбудимости и сокращения кардиомиоцита в различные фазы кардиоцикла. Экстрасистолы

  • 1. 1Роль физиологии в материалистическом понимании сущности жизни. Значение работ И. М. Сеченова и И. П. Павлова в создании материалистических основ физиологии


    Скачать 3.27 Mb.
    Название1. 1Роль физиологии в материалистическом понимании сущности жизни. Значение работ И. М. Сеченова и И. П. Павлова в создании материалистических основ физиологии
    АнкорObshaya_ShIZA.doc
    Дата28.01.2017
    Размер3.27 Mb.
    Формат файлаdoc
    Имя файлаObshaya_ShIZA.doc
    ТипДокументы
    #257
    страница11 из 26
    1   ...   7   8   9   10   11   12   13   14   ...   26

    63.7 Понятие о гемостазе. Процесс свертывания крови и его фазы. Факторы ускоряющие и замедляющие свертывание крови.

    Гомеостаз- сложная совокупность процессов, которая обеспечивает жидкое, текучее состояние крови, а также предупреждает и остановку кровотечений путем поддержания структурной целостности стенок сосудов и быстрого тромбирования их при повреждениях.

    Фазы процесса свертывания крови. 1 фаза - образование активных протромбиназных комплексов: неактивная протромбиназа (X) становится активной (Xа). В зависимости от матрицы 1 фаза может осуществляться по внешнему и внутреннему механизму. Внешний механизм - начинается с повреждения тканей. Из них освобождаются фосфоминиды, которые служат матрицей, на матрице активизируется X плазменный фактор, адсорбируется V плазменный фактор и Ca2+ - это активный протромбиназный комплекс. Это простой механизм, осуществляется быстро, но образуется мало протромбиназных комплексов на матрице: Xa + Va + Ca2+

    Внутренний механизм - начинается с повреждения сосудов и активации XII плазменного фактора. 3 пути его активации. В результате травмы изменяется заряд сосудистой стенки, обнажаются коллагеновые волокна и базальная мембрана, XII фактор адсорбируется на них и активируется (XIIa). Активация компонентами системы фибринолиза (белок плазмин). Активация компонентами кининовой системы - высокомолекулярный кининоген (фактор Фитуджеральда), прекаллекреин (фактор Флетчера).

    2 фаза - превращение протромбина (II) в тромбин (IIa). Эта фаза является ферментативной. Фермент - активный протромбиназный комплекс, обеспечивающий протеолитическое действие и отщепляющий от протромбина полипептиды (1 и 2), в результате чего образуется тромбин.

    3 фаза - образование фибриновых нитей.Протекает в 3 этапа:1 этап: ферментативный: фермент - белок тромбин - отщепляет от фибриногена тормозную группу превращая его в фибрин-мономер.2 этап: физико-химический - реакция колгемеризации - из фибрин-мономера образуется фибрин-полимер (S). Эта форма растворяется в некоторых жидкостях (раствор мочевины).3 этап - ферментативный: - фермент-стабилизирующие факторы: XIII плазменный фактор, фибринстабилизирующие факторы тромбоцитов, эритроцитов, лейкоцитов - превращают фибрин-S в фибрин J (нерастворимые нити).

    ПЛАЗМЕННЫЕ ФАКТОРЫ СВЕРТЫВАНИЯ КРОВИ: 1фибриногенБелок. Образуется в печени. Под влиянием тромбина переходит в фибрин. Участвует в агрегации тромбоцитов. Необходим для репарации тканей. 2протромбин Гликопротеид. Образуется в печени в присутствии витамина К. Под влиянием протромбиназыпереходит в тромбин (фактор Ив) 3тромбопластин Состоит из белка апопротеина III и комплекса фосфолипидов. Входит в состав мембран многих тканей. Является матрицей для развертывания реакций, направленных на образование протромбиназы по внешнему механизму 4.ион Са2 Участвует в образовании комплексов, входит в состав протромбиназы. Способствует агрегации тромбоцитов. Связывает гепарин. Принимает участие в ретракции сгустка и тромбоцитарной пробки. Тормозит фибринолиз 5.акцелератор-глобулин Белок. Образуется в печени. Активизируется тромбином (фактор Па). Создает оптимальные условия для взаимодействия фактора Ха и протромбина (фактор II)6.проконвертин -гликопротеид. Образуется в печени под влиянием витамина К. Принимает участие в формировании протромбиназы по внешнему механизму. Активируется факторами Х11в, Ха, 1Ха, Па и при взаимодействии с тромбопластином (фактор III)7.антигемофильный глобулин (АГГ). антигемофильный глобулин А - Гликопротеид. Синтезируется в печени, селезенке, лейкоцитах. Образует комплексную молекулу с фактором Виллебранда (FW) и специфическим антигеном. Активируется тромбином. Создает оптимальные условия для взаимодействия факторов 1Ха и X. При его отсутствии возникает заболевание гемофилия А 8.плазменный предшественник тромбопластина-Гликопротеид. Предполагают, что образуется в печени. Активируется фактором ХIIакалликреином совместно с высокомолекулярным кининогеном (ВМК) 9.фактор Хагемана- Белок. Предполагают, что образуется эндотелиальными клетками, лейкоцитами, макрофагами. Активируется отрицательно заряженными поверхностями, адреналином, калликреином. Запускают внешний и внутренний механизм образования протромбиназы и фибринолиза, активирует фактор XI и прекалликреин 10фибринстабилизирующий фактор (ФСФ), фибриназа Глобулин. Синтезируется фибробластами и мегакариоцитами. Стабилизирует фибрин.

    64.8 Сосудисто-тромбоцитарный гемостаз.

    Сосудисто-тромбоцитарный гемостаз сводится к образованию тромбоцитарной пробки, или тромбоцитарного тромба. Условно его разделяют на три стадии: 1) временный (первичный) спазм сосудов; 2) образование тромбоцитарной пробки за счет адгезии (прикрепления к поврежденной поверхности) и агрегации (склеивания между собой) тромбоцитов; 3) ретракция (сокращение и уплотнение) тромбоцитарной пробки.

    Сразу после травмы наблюдается первичный спазм кровеносных сосудов, благодаря чему кровотечение в первые секунды может не возникнуть или носит ограниченный характер. Первичный спазм сосудов обусловлен выбросом в кровь в ответ на болевое раздражение адреналина и норадреналина и длится не более 10—15 с. В дальнейшем наступает вторичный спазм, обусловленный активацией тромбоцитов и отдачей в кровь сосудосуживающих агентов — серотонина, ТхА2, адреналина и др.

    Повреждение сосудов сопровождается немедленной активацией тромбоцитов. В результате «раскрываются» вторичные рецепторы и создаются оптимальные условия для адгезии, агрегации и образования тромбоцитарной пробки.

    Адгезия обусловлена наличием в плазме и тромбоцитах особого белка — фактора Виллебранда (FW), имеющего три активных центра, два из которых связываются с экспрессированными рецепторами тромбоцитов, а один — с рецепторами субэндотелия и коллагеновых волокон. Таким образом, тромбоцит с помощью FW оказывается «подвешенным» к травмированной поверхности сосуда.

    Одновременно с адгезией наступает агрегация тромбоцитов, осуществляемая с помощью фибриногена — белка, содержащегося в плазме и тромбоцитах и образующего между ними связующие мостики, что и приводит к появлению тромбоцитарной пробки.

    Важную роль в адгезии и агрегации играет комплекс белков и полипептидов, получивших наименование «интегрины». Последние служат связующими агентами между отдельными тромбоцитами и структурами поврежденного сосуда. Агрегация тромбоцитов может носить обратимый характер, что зависит от недостаточной дозы агрегирующего (активирующего) агента.

    Из тромбоцитов, подвергшихся адгезии и агрегации, усиленно секретируются гранулы и содержащиеся в них биологически активные соединения — АДФ, адреналин, норадреналин, фактор Р4, ТхА2 и др. (этот процесс получил название реакции высвобождения), что приводит к вторичной, необратимой агрегации. Одновременно с высвобождением тромбоцитарных факторов происходит образованием тромбина, резко усиливающего агрегацию и приводящего к появлению сети фибрина, в которой застревают отдельные эритроциты и лейкоциты.

    Благодаря контрактильному белку тромбостенину тромбоциты подтягиваются друг к другу, тромбоцитарная пробка сокращается и уплотняется, т. е. наступает ее ретракция.В норме остановка кровотечения из мелких сосудов занимает 2—4 мин.

    Важную роль для сосудисто-тромбоцитарного гемостаза играют производные арахидоновой кислоты — простагландин I2 (PgI2), или простациклин, и ТхА2. При сохранении целости эндотелиального покрова действие Pgl преобладает над ТхА2, благодаря чему в сосудистом русле не наблюдается адгезии и агрегации тромбоцитов. При повреждении эндотелия в месте травмы синтез Pgl не происходит, и тогда проявляется влияние ТхА2, приводящее к образованию тромбоцитарной пробки.
    65.9 Свертывающася,противосвертывающая и фибринолитическая система крови,как главные компоненты аппарата функциональной системы поддержания жидкого состояния крови

    Свёртывающая система крови — многоступенчатая ферментная система, при активации которой растворенный в плазме крови фибриноген подвергается после отщепления краевых пептидов полимеризации и образует в кровеносных сосудах фибринные тромбы, останавливающие кровотечение.В физиологических условиях в С. с. к. уравновешены процессы активации и торможения, в результате сохраняется жидкое состояние крови. Локальная активация С. с. к., происходящая в местах повреждения кровеносных сосудов, способствует остановке кровотечения. Активация С. с. к. в сочетании с агрегацией клеток крови (тромбоцитов, эритроцитов) играет существенную роль в развитии локального тромбоза при нарушениях гемодинамики и реологических свойств крови, изменениях ее вязкости, воспалительных (например, при васкулитах) и дистрофических изменениях стенок кровеносных сосудов

    В целом противосвертывающий механизм может быть кратко представлен в следующем виде. При небольших концентрациях тромбина в крови происходит его инактивация антитромбинами и гепарином плазмы, поглощение клетками мононуклеарной фагоцитарной системы. При быстром нарастании концентрации тромбина в крови этих механизмов уже недостаточно для предотвращения нарастающей угрозы тромбообразования и тогда включается следующая, более сложная - нейрогуморальная — противосвертывающая система. Повышенный уровень тромбина воспринимается хеморецепторами сосудистого русла и передается структурам продолговатого мозга. В результате в кровь рефлекторно выбрасываются гепарин и активаторы фибринолитического процесса. Свертывающая и противосвертывающая системы находятся в организме в постоянной взаимосвязи и взаимодействии, в результате чего кровь в сосудистом русле пребывает в жидком состоянии.

    66.10 Понятие о группах крови.системы АВО и резус фактора. Определение группы крови. Правила переливание крови.

    Учение о группах крови возникло в связи с проблемой переливания крови. В 1901 г. К. Ландштейнер обнаружил в зритроцитах людей агглютиногены А и В. В плазме крови находятся агглютинины a и b (гамма-глобулины). Согласно классификации К.Ландштейнера и Я.Янского в зависимости от наличия или отсутствия в крови конкретного человека агглютиногенов и агглютининов различают 4 группы крови. Эта система получила название АВО, Группы крови в ней обозначаются цифрами и теми агглютиногенами, которые содержатся в эритроцитах данной группы. Групповые антигены – это наследственные врожденные свойства крови, не меняющиеся в течение всей Жизни человека. Агглютининов в плазме крови новорожденных нет. Они образуются в течение первого года жизни ребенка:I группа (О) – в эритроцитах агглютиногенов нет, в плазме содержатся агглютинины a и b ;II группа (А) – в эритроцитах содержится агглютиноген А, в плазме – агглютинин b ;III группа (В) – в эритроцитах находится агглютиноген В, в плазме – агглютинин a ;IV группа (АВ) – в эритроцитах обнаруживаются агглютиногены А и В, в плазме агглютининов нет.

    Система резус.К.Ландштейнером и А.Винером в 1940 г. в эритроцитах обезьяны макаки-резуса был обнаружен антиген, который они назвали резус-фактором. Этот антиген находится и в крови 85 процентов людей белой расы. У некоторых народов, например, эвенов резус-фактор встречается в 100 процентов. Кровь, содержащая резус-фактор, называется резус-положительной (Rh +). Кровь, в которой резус-фактор отсутствует, называется резус-отрицательной (Rh -). Резус-фактор передается по наследству. В настоящее время известно, что система резус включает много антигенов. Наиболее активными в антигенном отношении являются антиген D, затем следуют С, Е, d, с, е. Они и чаще встречаются

    Прежде чем переливать кровь человеку, необходимо определить группу крови реципиента и группу крови донора для оценки их совместимости. Определение группы крови и групповой совместимости выполняют следующим образом. Эритроциты сначала отделяют от плазмы и разводят физиологическим раствором. Одну часть затем смешивают с анти-А агглютининами, а другую — с анти-В агглютининами. Через несколько минут смеси исследуют под микроскопом. Если красные клетки крови собрались в комочки, т.е. агглютинировались, ясно, что произошла реакция антиген-антитело.

    В повседневной практике для решения вопроса о группе переливаемой крови пользуются иным правилом: переливаться должны одногруппная кровь и только по жизненным показаниям, когда человек потерял много крови. Лишь в случае отсутствия одногруппной крови с большой осторожностью можно перелить небольшое количество иногруппной совместимой крови. Объясняется это тем, что приблизительно у 10—20% людей имеется высокая концентрация очень активных агглютининов и гемолизинов, которые не могут быть связаны антиагглютининами даже в случае переливания небольшого количества иногруппнойкрови.Посттрансфузионные осложнения иногда возникают из-за ошибок при определении групп крови. Установлено, что агглютиногены А и В существуют в разных вариантах, различающихся по своему строению и антигенной активности. Большинство из них получило цифровое обозначение (А1, А,2, А3 и т. д., В1, В2 и т. д.). Чем больше порядковый номер агглютиногена, тем меньшую активность он проявляет. И хотя разновидности агглютиногенов А и В встречаются относительно редко, при определении групп крови они могут быть не обнаружены, что может привести к переливанию несовместимой крови.

    Следует также учитывать, что большинство человеческих эритроцитов несет антиген Н. Этот АГ всегда находится на поверхности клеточных мембран у лиц с группой крови 0, а также присутствует в качестве скрытой детерминанты на клетках людей с группами крови А, В и АВ. Н — антиген, из которого образуются антигены А и В. У лиц с I группой крови антиген доступен действию анти-Н-антител, которые довольно часто встречаются у людей со II и IV группами крови и относительно редко у лиц с III группой. Это обстоятельство может послужить причиной гемотрансфузионных осложнений при переливании крови 1 группы людям с другими группами крови.
    67.11Лимфа, ее состав, функции. Несосудистые жидкие среды,их роль в организме. Обмен воды между кровью и тканями.

    Лимфа образуется путем фильтрации тканевой жидкости через стенку лимфатических капилляров. В лимфатической системе циркулирует около 2 литров лимфы. Из капилляров она движется по лимфатическим сосудам, проходит лимфатические узлы и по крупным протокам поступает в венозное русло. Удельный вес лимфы 1,012-1023 г/мм3. Вязкость 1,7, а рН около 9,0. Электролитный состав лимфы сходен с плазмой крови. Но в ней больше анионов хлора и бикарбоната. Содержание белков в лимфе меньше, чем плазме: 2,5-5,6% или 25-65 г/л. Из форменных элементов лимфа в основном содержит лимфоциты. Их количество в ней 2.000-20.000 мкл 2-20 * 109 Л. Имеется и небольшое количество других лейкоцитов. Из них больше всего моноцитов. Эритроцитов в норме нет. Благодаря наличию в ней тромбоцитов, фибрина, факторов свертывания лимфа способна образовывать тромб. Однако время ее свертывания больше, чем у крови.

    Лимфа выполняет следующие функции:1. Поддерживает постоянство объема тканевой жидкости путем удаления ее избытка.2. Перенос питательных веществ, в основном жиров, от органов пищеварения к тканям.3. Возврат белка из тканей в кровь.4. Удаление продуктов обмена из тканей.5. Защитная функция. Обеспечивается лимфоузлами, иммуноглобулинами, лимфоцитами, макрофагами.6. Участвует в механизмах гуморальной регуляции, перенося гормоны и другие ФАВ.

    Внесосудистые жидкие среды организма (интерстициальная, спинномозговая,синовиальная, плевральная, перитонеальная, жидкая среда глазного яблока,слизь), их роль в обеспечении жизнедеятельности клеток организма.

    Осмотическое давление крови, лимфы и тканевой жидкости определяет обмен воды между кровью и тканями. Изменение осмотического давления жидкости, окружающей клетки, ведет к нарушениям в них водного обмена. Это видно на примере эритроцитов, которые в гипертоническом растворе NaCl теряют воду и сморщиваются, а гипотоническом растворе NaCl наоборот, набухают, увеличиваются в объеме и могут разрушится. Величина осмотического давления зависит от количества растворенных в воде молекул или ионов, а не от их размера и массы. Поэтому раствор, содержащий большое количество крупномолекулярных веществ, например, белков или полисахаридов, может обладать меньшим осмотическим давлением, чем менее концентрированный раствор неорганической соли, например NaCl.
    68.12 Лейкоциты и их виды. Методы подсчета. Лейкоцитарная формула.функции лейкоцитов.

    Лейкоциты, или белые кровяные тельца, представляют собой образования различной формы и величины. По строению лейкоциты делят на две большие группы: зернистые, или гранулоциты, и незернистые, или агранулоциты. К гранулоцитам относятся нейтрофилы, эозинофилы и базофилы, к агранулоцитам — лимфоциты и моноциты. Свое наименование клетки зернистого ряда получили от способности окрашиваться красками: эозинофилы воспринимают кислую краску (эозин), базофилы — щелочную (гематоксилин), а нейтрофилы — и ту, и другую.В норме количество лейкоцитов у взрослых людей колеблется от 4,5 до 8,5 тыс. в 1 мм3, или 4,5—8,5*109/л. Для разведения крови при подсчете лейкоцитов применяется следующий состав:1) ледяная уксусная кислота— 3,0 мл;2) 1% водный раствор генцианвиолета—3,0 мл;3) дистиллированная вода—300 мл.Уксусная кислота растворяет эритроциты, что облегчает подсчет лейкоцитов. Этому же способствует и окраска ядер лейкоцитов генцианвиолетом. Считают белые тельца при малом увеличении микроскопа в 100 больших квадратах. Удобно взять 6 рядов и затем еще 10 квадратов в каком-либо другом ряду. Допустим, подсчет ведется в 75 больших квадратах. В этом случае берут 5 рядов больших квадратов. Для вычисления абсолютного числа лейкоцитов в 1 мм3 крови количество их в 100 больших квадратах умножают на 4000 и на коэффициент разведения; полученную цифру делят на количество малых квадратов. Лейкоцитарная формула.

    В норме и патологии учитывается не только количество лейкоцитов, но и их процентное соотношение, получившее наименование лейкоцитарной формулы. В крови здорового человека могут встречаться зрелые и юные формы лейкоцитов, однако в норме обнаружить их удается лишь у самой многочисленной группы — нейтрофилов. К ним относятся юные и палочкоядерные нейтрофилы. Увеличение количества юных и палочкоядерных нейтрофилов свидетельствует об омоложении крови и носит название сдвига лейкоцитарной формулы влево, снижение количества этих клеток свидетельствует о старении крови и называется сдвигом лейкоцитарной формулы вправо. Сдвиг влево часто наблюдается при лейкозах, инфекционных и воспалительных заболеваниях.

    Общей функцией всех лейкоцитов является защита организма от бактериальных и вирусных инфекций, паразитарных инвазий, поддержание тканевого гомеостаза и участие в регенерации тканей. Основная функция нейтрофилов заключается в уничтожении бактерий и различных токсинов. Они обладают способностью к хемотаксису и фагоцитозу

    Базофилы,гистамин базофилов стимулирует фагоцитоз, оказывает противовоспалительное действие. В базофилах содержится фактор активирующий тромбоциты, который стимулирует их агрегацию и высвобождение тромбоцитарных факторов свертывания крови. Выделяя гепарин и гистамин, они предупреждают образование тромбов в мелких венах легких и печени.

    Эозинофилы обладают способностью к фагоцитозу, связыванию белковых токсинов и антибактериальной активностью. Их гранулы содержат белок, нейтрализующий гепарин, а также медиаторы воспаления и ферменты, препятствующие агрегации тромбоцитов. Эозинофилы принимают участие в борьбе с паразитарными инвазиями.При аллергических состояниях и аутоиммунных заболеваниях, эозинофилы накапливаются в тканях, где происходит аллергическая реакция.Моноциты Выделяемый ими интерлейкин-I, стимулирует пролиферацию лимфоцитов, остеобластов, фибробластов, эндотелиальных клеток. Макрофаги фагоцитируют и уничтожают микроорганизмы, простейших паразитов, старые и поврежденные, в том числе опухолевые клетки. Кроме того, макрофаги участвуют в формировании иммунного ответа, воспаления, стимулируют регенерацию тканей. Лимфоциты делятся на Т – и В-лимфоциты. Т-киллеры уничтожают чужеродные белки-антигены и бактерии. Т-хелперы участвуют в реакции антиген-антитело. Т-клетки иммунологической памяти запоминают структуру антигена и распознают его. Т-амплификаторы стимулируют иммунные реакции, а Т-супрессоры тормозят образование иммуноглобулинов. В-лимфоциты составляют меньшую часть. Они вырабатывают иммуноглобулины и могут превращаться в клетки памяти.
    69.13Тромбоциты,колличество и функции в организме.

    Тромбоциты, или кровяные пластинки, образуются из гигантских клеток красного костного мозга — мегакариоцитов.

    В норме число тромбоцитов у здорового человека составляет 2—4-1011 /л, или 200—400 тыс. в 1 мкл. Увеличение числа тромбоцитов носит наименование «тромбоцитоз», уменьшение — «тромбоцитопения». В естественных условиях число тромбоцитов подвержено значительным колебаниям, но редко выходит за пределы нормы.

    Основное назначение тромбоцитов — участие в процессе гемостаза Важная роль в этой реакции принадлежит так называемым тромбоцитарным факторам, которые сосредоточены главным образом в гранулах и мембране тромбоцитов.На поверхности тромбоцитов находятся гликопротеиновые образования, выполняющие функции рецепторов. Часть из них «замаскирована» и экспрессируется после активации тромбоцита стимулирующими агентами — АДФ, адреналином, коллагеном, микро­фибриллами и др.

    Тромбоциты принимают участие в защите организма от чужеродных агентов. Они обладают фагоцитарной активностью, содержат IgG, являются источником лизоцима и β-лизинов, способных разрушать мембрану некоторых бактерий. Кроме того, в их составе обнаружены пептидные факторы, вызывающие превращение «нулевых» лимфоцитов (0-лимфоциты) в Т- и В-лимфоциты. Эти соединения в процессе активации тромбоцитов выделяются в кровь и при травме сосудов защищают организм от попадания болезнетворных микроорганизмов.

    Регуляторами тромбоцитопоэза являются тромбоцитопоэтины кратковременного и длительного действия. Они образуются в костном мозге, селезенке, печени, а также входят в состав мегакариоцитов и тромбоцитов. Тромбоцитопоэтины кратковременного действия усиливают отшнуровку кровяных пластинок от мегакариоцитов и ускоряют их поступление в кровь; тромбоцитопоэтины длительного действия способствуют переходу предшественников гигантских клеток костного мозга в зрелые мегакариоциты. На активность тромбоцитопоэтинов непосредственное влияние оказывают ИЛ-6 и ИЛ-11.
    70.1 Значение кровообращения для организма.

    Функциональная характеристика разных областей системы кровообращения.

    Функциональная классификация и характеристика сосудов.

    Кровь движется по кровеносным сосудам благодаря периодическим сокращениям сердца.

    Сердце и сосуды составляют систему кровообращения. Это - одна из важнейших физиологических систем.Многообразные функции крови могут осуществляться лишь при её непрерывном движении в сосудах,т.е при наличии кровообращения.Кровь может выполнять свои разнообразные функции только находясь в постоянном движении. Снабжение кровью органов и тканей. Кровь непрерывно движется по сосудам , что дает ей возможность выполнять все жизненно важные функции, а именно транспортную (перенос кислород и питательные вещества), защитную (содержит антитела), регуляторную (ферменты, гормоны и биологически активные вещества).

    Оттекающая от тканей венозная кровь поступает в правое предсердие, а оттуда в правый желудочек.

    При сокращении его кровь нагнетается в лёгочную артерию.Протекая через легкие, она отдает

    углекислый газ и насыщается кислородом. Система легочных сосудов: легочные артерии, артериолы, капиляры и вены-образуют малый круг кровообращения. Обогащенная кислородом кровь из лёгким по лёгочным венам поступает в левое предсердие, а оттуда в левый желудочек. При сокращении последнего она нагнетается в аорту, артерии, артериолы и капиляры всех органов и тканей,а оттуда по венулам и венам протекает в правое предсердие. Система этих сосудов образует большой круг кровообращения.

    В сосудистой системе различают несколько видов сосудов:

    -магистральные это наиболее крупные артерии, в которых ритмически пульсирующий, изменчивый кровоток превращается в более равномерный и плавный. Кровь в них движется от сердца. Стенки их содержат мало гладкомышечных элементов и много эластических волокон.

    -резистивные они включают в себя прекапиллярные (мелкие артерии и артериолы) и посткапиллярные (венулы и мелкие вены) сосуды сопротивления.

    -истинные капиляры это обменные сосуды важнейший отдел сосудисто сердечной системы. Через тонкие стенки капилляров происходит обмен между кровью и тканями-транскапиллярный обмен.В стенках нет гладкомышечных элементов, они образованы одним слоем клеток.

    -емкостные сосуды венозный отдел сердечно сосудистой системы.Их стенки тоньше и мягче стенок артерий, также имеют в просвете сосудов клапаны. Кровь в них движется от органов и тканей к сердцу.Они вмещают примерно 70-80% всей крови.

    -шунтирующие сосуды это артериовенозные анастомозы, обеспечивающие прямую связь между мелкими артериями

    и венами в обход капиллярного ложа.
    71.2 Сердце, значение его камер и клапанного аппарата.Кардиоцикл и его структура.

    Изменение давления и объема крови в полостях сердца в различные фазы кардиоцикла.

    Сердце это полый мышечный орган.Образован 4мя камерами (2 предсердия и 2 желудочка).

    Масса сердца составляет 0,425-0,570 кг.Стенка сердца из 3 слоёв: эндокард, миокард, эпикард.

    2 вида клапанов атриовентрикулярные ( между предсердием и желудочком): левая часть-двустворчатый, правая-трёхстворчатый и полулунные, которые отделяют аорту от левого желудочка и лёгочный ствол от правого желудочка.

    Сердечный цикл и его фазы. Можно различить 2 фазы систолу и диастолу. Систола предсердий слабее и короче систолы желудочков -0,1 сек, а систола желудочков -0,3 с, диастола предсердий 0,7 с, а желудочков 0,5 с.Общая пауза (одновременная диастола предсердий и желудочков) сердца длится 0,4с. Весь сердечный цикл 0,8с.

    Длительность различных фаз сердечного цикла зависит от частоты сердечных сокращений.При более частых сокращениях деятельность каждой фазы уменьшается, особенно диастолы.

    Во время диастолы предсердий атриовентрикулярные клапаны открыты и кровь поступающая из соответствующих сосудов, заполняет не только их полости, но и желудочки. Во время систолы предсердий желудочки полностью заполняются кровью.

    При этом исключается обратное движение крови в полые илегочные вены. По мере наполнения полостей желудочков кровью створки атриовентрикулярных клапанов плотно смыкаются и отделяют полость предсердий от желудочков.К концу систолы

    желудочков давление в них становится больше давления в аорте и лёгочном стволе.Это способствует открытию полулунных клапанов, и кровь из желудочов поступает в соответствующие сосуды. Во время диастолы желудочков давление в них резко падает,

    что создает условия для обратного движения крови в сторону желудочков.При этом кровь заполняет кармашки полулунных клапанов и обуславливает их смыкание.

    Открытие и закрытие клапанов зависит от изменения величины давления в полостях сердца.
    72. Физиологические особенности и с-ва миокарда. Автоматия сердца. Мышечный слой миокарда представлен двумя типами клеток: клетками рабочего миокарда (типичные кардиомиоциты) и клетками проводящей системы (атипические кардиомиоциты).

    Особенностью клеток сократительного миокарда является наличие вставочных дисков между кардиомиоцитами (нексусов). Вставочные диски представляют собой разновидности электрических синапсов, обеспечивающих переход возбуждения от одного кардиомиоцита к другому. Указанные образования позволяют рассматривать рабочий миокард как функциональный синцитий.

     Автоматия.

    Автоматия сердца – это способность отдельных клеток миокарда возбуждаться без внешней причины, в связи с процессами, протекаю-щими в них самих. Свойством автоматии обладает проводящая система сердца. Сократительный миокард свойством автоматии не обладает. Наиболее выражено свойство автоматии представлено в синоатриальном узле. Клеточные элементы синоатриального узла в состоянии относи-тельного физиологического покоя генерируют 60 – 70 потенциалов действия в 1 минуту. В норме именно синоатриальный узел является пейсмекером – водителем ритма сердца. Атриовентрикулярный узел обладает более низкой автоматией. Это выражается в том, что если заблокировать при помощи каких либо факторов синоатриальный узел водителем ритма становится атривентрикулярный узел. Однако, он способен генерировать лишь 40 – 45 потенциалов действия в 1 минуту в состоянии относительного физиологического покоя. Еще более низкой автоматией обладают другие элементы проводящей системы – пучок Гисса, ножки пучка Гисса, волокна Пуркинье. Автоматия в проводящей системе уменьшается от основания сердца к верхушке, градиент автоматии от основания сердца к верхушке увеличивается.

    Причиной спонтанно возникающих потенциалов действия в элемен-тах проводящей системы является феномен спонтанной диастолической деполяризации. В основе спонтанной диастолической деполя-ризации лежит комплекс процессов, связанный с изменением ионных токов через биологические мембраны клеток проводящей системы. Доказано, что как только разность потенциалов в клетках синоатри-ального узла достигнет максимально возможного значения, тут же повышается проницаемость мембран к ионам Na+ и Ca++. Одновременно снижается проницаемость по отношению к ионам К+ и Cl-. Это и являет-ся причиной деполяризации. Крутизна спонтанной диастолической деполяризации может меняться в зависимости от скорости ионных токов Na+ и Ca++ через мембрану – чем больше скорость ионных токов, теб больше крутизна спонтанной диастолической деполяризации.

    Сердце это полый мышечный орган.Образован 4мя камерами (2 предсердия и 2 желудочка).2 перегородки вертикальная и горизнтальная.

    Масса сердца составляет 0,425-0,570 кг.Стенка сердца из 3 слоёв: эндокард, миокард, эпикард.

    2 вида клапанов атриовентрикулярные ( между предсердием и желудочком): левая часть-двустворчатый, правая-трёхстворчатый и полулунные, которые отделяют аорту от левого желудочка и лёгочный ствол от правого желудочка.

    Длинна сердца 12-15см.поперечны размер 8-10см.Переднезадний 5-8см.Эндокард выстилает внутреннюю поверхность сердца.

    Миокард из поперечно полосатой мышцы. Мускулатура предсердей отделена от мускулатуры желудочков соединительнотканной

    перегородкой.Мышечный слой предсердий развит значительно слабее, чем мышечный слой желудочков, что связанно с особенностями функций. Перекард окружает сердце как мешок и обеспечивает его свободное движение. Сосотит из 2 листков:

    внутреннего и наружного, а между ними щель с серозной жидкостью.

    миокард создает ритмические автоматические сокращения сердца, чередующиеся с расслаблениями, связанно с наличием проводящей системы сердца, по которой расспространяется импульс.

    Автоматия-- это способность тканей и органов приходить в состояние возбуждения без раздражения,связанно с функцией проводящей системы.

    Градиент автоматии показывает напряженность и степень изменения способности сердца к автоматии снижаться от основания

    к верхушке.
    73. ПД кардиомиоцитов

    В состоянии покоя внутренняя поверхность мембран кардиомиоцитов заряжена отрицательно. Потенциал покоя определяется в основном трансмембранным градиентом концентрации ионов К+ и у большинства кардиомиоцитов (кроме синусового узла и АВ-узла ) составляет от минус 80 до минус 90 мВ. При возбуждении в кардиомиоциты входят катионы, и возникает их временная деполяризация - потенциал действия.

    Ионные механизмы потенциала действия в рабочих кардиомиоцитах и в клетках синусового узла и АВ-узла разные, поэтому и форма потенциала действия также различается ( рис. 230.1 ).

    У потенциала действия кардиомиоцитов системы Гиса-Пуркинье и рабочего миокарда желудочков выделяют пять фаз ( рис. 230.2 ). Фаза быстрой деполяризации (фаза 0) обусловлена входом ионов Na+ по так называемым быстрым натриевым каналам . Затем, после кратковременной фазы ранней быстрой реполяризации (фаза 1), наступает фаза медленной деполяризации, или плато (фаза 2). Она обусловлена одновременным входом ионов Са2+ по медленным кальциевым каналам и выходом ионов К+. Фаза поздней быстрой реполяризации (фаза 3) обусловлена преобладающим выходом ионов К+. Наконец, фаза 4 - это потенциал покоя .

    Брадиаритмии могут быть обусловлены либо снижением частоты возникновения потенциалов действия, либо нарушением их проведения.

    Способность некоторых клеток сердца к самопроизвольному образованию потенциалов действия называется автоматизмом . Этой способностью обладают клетки синусового узла , проводящей системы предсердий , АВ-узла и системы Гиса-Пуркинье . Автоматизмобусловлен тем, что после окончания потенциала действия (то есть в фазу 4) вместо потенциала покоя наблюдается так называемая спонтанная (медленная) диастолическая деполяризация. Ее причина - вход ионов Na+ и Са2+. Когда в результате спонтанной диастолической деполяризации мембранный потенциал достигает порога, возникает потенциал действия.

    Проводимость , то есть скорость и надежность проведения возбуждения, зависит, в частности, от характеристик самого потенциала действия: чем ниже его крутизна и амплитуда (в фазу 0), тем ниже скорость и надежность проведения.

    При многих заболеваниях и под действием ряда лекарственных средств скорость деполяризации в фазу 0 уменьшается. Кроме того, проводимость зависит и от пассивных свойств мембран кардиомиоцитов (внутриклеточного и межклеточного сопротивления). Так, скорость проведения возбуждения в продольном направлении (то есть вдоль волокон миокарда) выше, чем в поперечном (анизотропное проведение).

    Во время потенциала действия возбудимость кардиомиоцитов резко снижена - вплоть до полнойневозбудимости. Это свойство называется рефрактерностью . В период абсолютной рефрактерности никакой раздражитель не способен возбудить клетку. В период относительнойрефрактерности возбуждение возникает, но только в ответ на надпороговые раздражители; скорость проведения возбуждения снижена. Период относительной рефрактерности продолжается вплоть до полного восстановления возбудимости. Выделяют также эффективный рефрактерный период, при котором возбуждение может возникнуть, но не проводится за пределы клетки.

    В кардиомиоцитах системы Гиса-Пуркинье и желудочков возбудимость восстанавливается одновременно с окончанием потенциала действия. Напротив, в АВ-узле возбудимость восстанавливается со значительной задержкой. Сердце: связь между возбуждением и сокращением.
    74.соотношение возбуждения, возбудимости и сокращения кардиомиоцита в различные фазы кардиоцикла. Экстрасистолы

    Особенности возбудимости и сократимости миокарда.

    Из материалов прошлого семестра вы помните, что возбудимость это способность возбудимой ткани под действием раздражителя переходить из состояния покоя в состояние возбуждения. Возбуждение в возбудимых тканях проявляется в виде биоэлектрических процессов и специфической ответной реакции. В сократительных клетках миокарда потенциал действия имеет особенности. Особенностью потенциала действия сократительного миокарда является наличие длительной фазы медленной реполяризации, которая обусловлена входящим током ионов Са++. Это приводит к тому, что длительность потенциала действия кардиомиоцитов достигает 250-300 мсек. Напомню, что длительность потенциала действия мышечных волокон скелетных мышц составляет порядка 5 мсек. Между кривой потенциала действия, кривой изменения возбудимости и кривой, отражающей изменение длины мышечного волокна существуют определенные соотношения В отличие от скелетной мышцы, у которой потенциал действия реализуется в течение латентного периода, в сократительном миокарде потенциал действия по времени совпадает с длительностью систолы и большей частью диастолы. Поскольку длительность высоковольтного пика совпадает с длительностью абсолютной рефрактерной фазы, сердце во время систолы и в течение 2/3 диастолы не может отвечать дополнительным возбуждением на какие-либо воздействия. К тому же в заключительной части диастолы возбудимость миокарда существенно снижена. Поэтому миокард в отличие от скелетной мышцы не способен к тетаническому сокращению. Эта особенность миокарда сформировалась в ходе эволюционного развития как приспособительный признак, поскольку основная функция сердца – функция биологического насоса. Эта функция может качественно выполняться только в условиях ритмических одиночных сокращений миокарда.

    Таким образом, мы с вами видим, что два свойства миокарда возбудимость и сократимость связаны между собой и обусловливают важные функции сердца.

    Экстрасистолы – это внеочередные по отношению к нормальному ритму сердца сокращения сердечной мышцы. Обычно экстрасистолы ощущаются пациентом как сильный сердечный толчок с провалом или замиранием после него. При прощупывании пульса в это время может быть выпадение пульсовой волны. Некоторые экстрасистолы могут возникать незаметно для больного.

    Экстрасистола происходит при возникновении электрического импульса вне синусового узла. Такой импульс распространяется по сердечной мышце в период между нормальными импульсами и вызывает внеочередное сокращение сердца. Очаг возбуждения, в котором возникает внеочередной импульс, может появиться в любом месте проводящей системы сердца. К образованию подобного очага приводят как заболевания самого сердца (кардиосклероз, инфаркт миокардавоспалительные заболевания сердечной мышцы, пороки сердца), так и болезни других органов.


    75.6 Внутрисердечные и внесердечные факторы, участвующие в регуляции деятельности сердца, их физиологические механизмы.

    Нервная регуляция осуществляется импульсами поступающими к сердцу из ЦНС по блуждающим и симпатическим нервам.

    Сердечные нервы образованы двумя нейронами.Тела первых, отростки которых составляют блуждающие нервы расположены

    в продолговатом мозге их отростки заканчиваются в интрамуральных ганглиях сердца. Там вторые нейроны, отрости которых идут к проводящей системе. Первые в боковых рогах пяти верхних сегментах грудного отдела спинного

    мозга, их отростки заканчиваются в шейных и верхних грудных симпатических узлах.Тут вторые нейроны отростки которых идут к сердцу. При сильном раздражении электрическом переферического отрезка перерезанного блуждающего

    нерва происходит замедление сердечных сокращений.При сильном раздражении блуждающих нервов работа сердца на некоторое время прекращается. Пи раздражении сердечных ветвей симпатического нерва улучшает проведение возбуждения в сердце

    и повышает возбудимость сердца.

    Гуморальная регуляяция под воздействием биологически активных веществ.

    Катехоламины-адреналин и норадреналин.увеличивают силу и частоту ритма сердечных сокращений.При физических нагрузках мозговой слой коры надпочечников выбрасывает в кровь много адреналина-усиление сердечной деятельности.

    Стимулируют катехоламины В-рецепторы миокарда, активация аденилатциклазы-образование цАМФ. Он активирует фосфорилазу, вызывающую расщепление внутримышечного гликогена и образование глюкозы.активация Са -сопряжение возбуждения и сокращения

    в миокарде.Повышают проницаемость клеточных мембран для Са.Активация аденилатциклазы в миокарде и при действии глюкагона.

    Ангиотензин и серотонин увеличивают силу сокращений миокарда, а тироксин учащает сердечный ритм.

    Механизмы регуляции деятельности сердца делят на внесердечные и внутрисердечные (см. рис. 1).

    Мпрямая соединительная линия 11прямая соединительная линия 12ЕХАНИЗМЫ РЕГУЛЯЦИИ ДЕЯТЕЛЬНОСТИ СЕРДЦА


    1   ...   7   8   9   10   11   12   13   14   ...   26


    написать администратору сайта