1. 1Роль физиологии в материалистическом понимании сущности жизни. Значение работ И. М. Сеченова и И. П. Павлова в создании материалистических основ физиологии
Скачать 3.27 Mb.
|
40.12 Восходящие активирующие и тормозящие влияния ретикулярной формации ствола мозга на кору больших полушарий. Роль РФ в формировании целостностной деятельности организма. Ретикулярные пути, облегчающие активность моторных систем спинного мозга, берут начало от всех отделов РФ. Пути, идущие от моста, тормозят активность мотонейронов спинного мозга, иннервирующих мышцы-сгибатели, и активируют мотонейроны мышц-разгибателей. Пути, идущие от РФ продолговатого мозга, вызывают противоположные эффекты. РФ ствола мозга участвует в передаче информации от коры большого мозга, спинного мозга к мозжечку и, наоборот, от мозжечка к этим же системам. Функция данных связей заключается в подготовке и реализации моторики, связанной с привыканием, ориентировочными реакциями, болевыми реакциями, организацией ходьбы, движениями глаз. Восходящие влияния РФ на кору большого мозга повышают ее тонус, регулируют возбудимость ее нейронов, не изменяя специфику ответов на адекватные раздражения. РФ влияет на функциональное состояние всех сенсорных областей мозга, следовательно, она имеет значение в интеграции сенсорной информации от разных анализаторов. РФ имеет прямое отношение к регуляции цикла бодрствование—сон. Стимуляция одних структур РФ приводит к развитию сна, стимуляция других вызывает пробуждение. Г. Мэгун и Д. Моруцци выдвинули концепцию, согласно которой все виды сигналов, идущих от периферических рецепторов, достигают по коллатералям РФ продолговатого мозга и моста, где переключаются на нейроны, дающие восходящие пути в таламус и затем в кору большого мозга. РФ ствола мозга может оказывать не только возбуждающее, но и тормозное влияние на активность коры мозга. Нисходящие влияния РФ ствола мозга на регуляторную деятельность спинного мозга были установлены еще И. М. Сеченовым . Им было показано, что при раздражении среднего мозга кристалликами соли у лягушки рефлексы отдергивания лапки возникают медленно, требуют более сильного раздражения или не появляются вообще, т. е. тормозятся. Г. Мэгун , нанося локальные раздражения на РФ продолговатого мозга, нашел, что при раздражении одних точек тормозятся, становятся вялыми рефлексы сгибания передней лапы, коленный, роговичный. При раздражении РФ в других точках продолговатого мозга эти же рефлексы вызывались легче, были сильнее, т. е. их реализация облегчалась. По мнению Мэгуна, тормозные влияния на рефлексы спинного мозга может оказывать только РФ продолговатого мозга, а облегчающие влияния регулируются всей РФ ствола и спинного мозга. РФ ствола мозга имеет прямое отношение к регуляции мышечного тонуса, поскольку на РФ ствола мозга поступают сигналы от зрительного и вестибулярного анализаторов и мозжечка. От РФ к мотонейронам спинного мозга и ядер черепных нервов поступают сигналы, организующие положение головы, туловища и т. д. Вопрос 41.13 Гипоталамус, характеристика основных ядерных групп. Роль гипоталамуса в интеграции вегетативных, соматических и эндокринных функций, в формировании эмоций, мотиваций, стресса. Гипоталамус- структура промежуточного мозга, входящая в лимбическую систему, организующая эмоциональные, поведенческие, гомеостатические реакции организма. В гипоталамус входят серый бугор, воронка с нейрогипофизом и сосцевидные тела. Выделают около 50 пар ядер и их объединяют в 5 групп: -преоптическая группа имеет выраженные связи с конечным мозгом и делится на медиальное и латеральное преоптические ядра; -передняя группа, в состав которой входят супраоптическое, паравентрикулярные ядра -средняя группа состоит из нижнемедиального и верхнемедиального ядер -наружная группа включает в себя латеральное и гипоталамическое поле и серобугорные ядра -задняя группа сформирована из медиальных и латеральных ядер сосцевидных тел и заднего гипоталамического ядра Раздражение ядер передней группы сопровождается парасимпатическими эффектами. Раздражение ядер задней группы вызывает симпатические эффекты в работе органов. Стимуляция ядер средней группы приводит к снижению влияний симпатического отдела автономной нервной системы. В гипоталамусе располагаются центры гомеостаза, теплорегуляции, голода и насыщения, жажды, страха, ярости, сна и бодрствование и другие. Все эти центры реализуют свои функции путем активации или торможения автономного отдела НС, эндокринной, структур ствола и переднего мозга. Нейроны ядер передней группы продуцируют вазопрессин, который попадает в нейрогипофиз. Нейроны срединной группы либерины и статины, регулирующие активность аденогипофиза. Они также обладают детектирующей функцией: реагируют на изменения температуры крови, осмотического давления плазмы, количества и состав гормонов крови. Во время операций показало, что у человека раздражение участков вызвало эйфорию, эротические переживания. Патологические процессы в гипоталамусе сопровождаются ускорением полового созревания, нарушением менструального цикла, половой функции. Раздражение передних отделов вызывает пассивно-оборонительную реакцию, ярость, страх, а задних - вызывает активную агрессию. Раздражение заднего гипоталамуса- расширению зрачков, сокращение мочевого пузыря. В гипоталамусе образуются пептиды – энкефалины, эндорофины , обладающие морфиноподобным действием и способствуют снижению стресса. Вопрос 42.14 Лимбическая система мозга, ее роль в формировании мотиваций, эмоций, саморегуляции вегетативных функций. Представляет собой функциональное объединение структур мозга, участвующих в организации эмоционально-мотивационного поведения (пищевой, половой, обонятельный инстинкты). К лимбической системе относятся такие образования древней и старой коры, как обонятельные луковицы, гиппокамп, поясная извилина, зубчатая фасция, парагиппокампальная извилина, а также подкорковое миндалевидное ядро и переднее таламическое ядро. 1.Формирование эмоций. При операциях на мозге было установлено, что раздражение миндалевидного ядра вызывает появление у пациентов беспричинных эмоций страха, гнева, ярости. Раздражение некоторых зон поясной извилины ведет к возникновению немотивированной радости или грусти. А так как лимбическая система участвует и в регуляции функций висцеральных систем, то все вегетативные реакции возникающие при эмоциях (изменение работы сердца, кровяного давления, потоотделения) также осуществляются ею. Гипоталамус при этом представляется структурой, ответственной преимущественно за вегетативные проявления эмоций - изменение частоты и силы сердечных сокращений, артериального давления, дыхания. 2. Формирование мотиваций. Она участвует в возникновении и организации направленности мотиваций. Миндалевидное ядро регулирует пищевую мотивацию. Некоторые его области тормозят активность центра насыщения и стимулируют центр голода гипоталамуса. Другие действуют противоположным образом. За счет этих центров пищевой мотивации миндалевидного ядра формируется поведение на вкусную и невкусную пищу. В нем же есть отделы регулирующие половую мотивацию. При их раздражении возникает гиперсексуальность и выраженная половая мотивация. 3. Участие в механизмах памяти. В механизмах запоминания особая роль принадлежит гиппокампу. Во-первых, он классифицирует и кодирует всю информацию, которая должна быть заложена в долговременной памяти. Во-вторых, обеспечивает извлечение и воспроизведение нужной информации в конкретный момент. Предполагают, что способность к обучению определяется врожденной активностью соответствующих нейронов гиппокампа. 4. Регуляция вегетативных функций и поддержание гомеостаза. ЛС называют висцеральным мозгом, так как она осуществляет тонкую регуляцию функций органов кровообращения, дыхания, пищеварения, обмен веществ и т.д. Особое значение ЛС состоит в том, что она реагирует на небольшие отклонения параметров гомеостаза. Она влияет на эти функции через вегетативные центры гипоталамуса и гипофиз. Вопрос 43.15 Таламус, функциональная характеристика и особенности ядерных групп таламуса. Таламус- структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга. Коленчатые тела таламуса являются подкорковыми центрами зрения и слуха, а узел уздечки и переднее зрительное ядро участвует в анализе обонятельных сигналов, а зрительный бугор является подкорковой станцией для всех видов чувствительности. Зрительный бугор является центром организации и реализации инстинктов, влечений и эмоций. Ядра образуют комплексы и их можно разделить по признаку проекции в кору на 3 группы. Передняя проецирует аксоны своих нейронов в поясную извилину коры больного мозга, медиальная - в лобную долю коры, латеральная- в теменную, височную, затылочную доли коры. 1.К специфическим ядрам относятся переднее вентральное, медиальное, вентролатеральное, постлатеральное, постмедиальное, латеральное и медиальное коленчатые тела. Функциональной единицей специфических ядер являются «релейные» нейроны, у которых мало дендритов и длинный аксон, их функция переключение информаций, идущей в кору большого мозга от кожных, мышечных и других рецепторов. От специфических ядер инфа попадает в 3-4 слои коры больного мозга. К специфическим ядрам идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Латеральное коленчатое тело имеет прямые эфферентные связи с затылочной долей большого мозга и афферентные с сетчаткой глаза. В медиальное коленчатое тело поступают афферентные импульсы из латеральной петли и от нижних бугров четверохолмий. Эфферентные пути от медиальных коленчатых тел идут в височную зону, промежуточный мозг. 2.Ассоциативные ядра представлены передним медиодорсальным, латеральным дорсальными ядрами и подушкой. Переднее ядро связано с лимбической корой, медиодорсальное – с лобной долей коры, латеральное дорсальное – с теменной, подушка – с ассоциативными зонами теменной и височной долями коры большого мозга. Основными клеточными структурами ядер являются мультиполярные, биполярные трехстворчатые нейроны. 3.Неспецифические ядра представлены срединным центром, парацентральным ядром, центральным медиальным и латеральным, субмедиальным, вентральным передним, парафасцикулярным комплексами, ретикулярным ядром, перивентрикулярной и центральной серой массой. Их аксоны поднимаются в кору большого мозга и контактируют со всеми слоями диффузные связи. К неспецифическим ядрам поступают связи из РФ ствола мозга, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса. Таламус позволяет организовывать сосание, жевание, глотание, смех. 44.16. Роль базальных ядер в формировании мышечного тонуса и сложных двигательных актов. Базальные ядра головного мозга располагаются под белым веществом внутри переднего мозга, преимущественно в лобных долях. К базальным ядрам относят хвостатое ядро , скорлупу , ограду , бледный шар. При недостатке дофамина в хвостатом ядре (например, при дисфункции черного вещества) бледный шар растормаживается, активизирует спинно-стволовые системы, что приводит к двигательным нарушениям в виде ригидности мышц. Хвостатое ядро и бледный шар принимают участие в таких интегративных процессах, как условнорефлекторная деятельность, двигательная активность . При воздействиях на хвостатое ядро, помимо нарушений высшей нервной деятельности, отмечаются расстройства движения. Раздражение бледного шара с помощью вживленных электродов вызывает сокращение мышц конечностей, активацию или торможение γ-мотонейронов спинного мозга. Повреждение бледного шара вызывает у людей гипомимию, маскообразность лица, тремор головы, конечностей (причем этот тремор исчезает в покое, во сне и усиливается при движениях), монотонность речи. При повреждении бледного шара наблюдается миоклония — быстрые подергивания мышц отдельных групп или отдельных мышц рук, спины, лица. В первые часы после повреждения бледного шара в остром опыте на животных резко снижалась двигательная активность, движения характеризовались дискоординацией, отмечалось наличие незавершенных движений, при сидении — поникшая поза. Начав движение, животное долго не могло остановиться. У человека с дисфункцией бледного шара затруднено начало движений, исчезают вспомогательные и реактивные движения при вставании, нарушаются содружественные движения рук при ходьбе. Стимуляция ограды вызывает ориентировочную реакцию, поворот головы в сторону раздражения, жевательные, глотательные, иногда рвотные движения. Раздражение ограды тормозит условный рефлекс на свет, мало сказывается на условном рефлексе на звук. Стимуляция ограды во время еды тормозит процесс поедания пищи. Большое значение в регуляции мышечного тонуса имеют базальные ядра - бледный шар и полосатое тело, которые образуют стриопаллидарную систему. Эти структуры регулируют активность всех нижележащих отделов ЦНС, участвующих в регуляции мышечного тонуса, обеспечивая адекватное перераспределение тонуса мышц при различных видах деятельности. При поражении экстрапирамидной системы, составной частью которой являются базальные ядра, возникают нарушения регуляций тонуса мускулатуры, что приводит к развитию так называемых дрожательных параличей (паркинсонизму, атетозу, хорее и др.). 45.17 Структурно-функциональная организация коры больших полушарий, проекционная и ассоциативная зоны. Пластичность функций коры. И.П.Павлов выделял проекционные зоны коры (корковые концы анализаторов отдельных видов чувствительности) и расположенные между ними ассоциативные зоны, изучал в мозге процессы торможения и возбуждения, их влияние на функциональное состояние коры больших полушарий. Деление коры на проекционные и ассоциативные зоны способствует пониманию организации работы коры больших полушарий и оправдывает себя при решении практических задач, в частности при топической диагностике. Проекционные зоны обеспечивают главным образом простые специфические физиологические акты, прежде всего восприятие ощущений определенной модальности. Подходящие к ним проекционные проводящие пути связывают эти зоны с находящимися с ними в функциональном соответствии рецептор-ными территориями на периферии. Примерами проекционных корковых зон являются уже описанные в предыдущих главах область задней центральной извилины (зона общих видов чувствительности) или расположенная на медиальной стороне затылочной доли область шпорной борозды (проекционная зрительная зона). Ассоциативные зоны коры не имеют непосредственных связей с периферией. Они находятся между проекционными зонами и имеют многочисленные ассоциативные связи с этими проекционными и с другими ассоциативными зонами. Функцией ассоциативных зон является осуществление высшего анализа и синтеза многих элементарных и более сложных компонентов. Здесь по существу происходит осмысление поступающей в мозг информации, формирование представлений и понятий. Некоторые ткани сохраняют способность к образованию новых клеток из клеток-предшественников в течение всей жизни. Это клетки печени, кожи, энтероциты. Нервные клетки не обладают такой способностью. Однако у них сохраняется способность к образованию новых отростков и синапсов. Т.е. каждый нейрон способен при повреждении отростка образовывать новые. Восстановление отростков может происходить двумя путями: путем формирования нового конуса роста и образования коллатералей. Обычно росту нового аксона препятствует возникновение глиального рубца. Но несмотря на это новые синаптические контакты образуются коллатералями поврежденного аксона. Наиболее высока пластичность нейронов коры. Любой ее нейрон запрограммирован на то, что при его повреждении он активно пытается восстановить утраченные связи. Каждый нейрон вовлечен в конкурентную борьбу с другими за образование синаптических контактов. Это служит основой пластичности нейронных корковых сетей. Установлено, что при удалении мозжечка нервные пути, идущие к нему, начинают прорастать в кору. Если в интактный мозг пересадить участок мозга другого животного, то нейроны этого кусочка ткани образуют многочисленные контакты с нейронами мозга реципиента. Пластичность коры проявляется как в нормальных условиях, например при образовании новых межкортикальных связей в процессе обучения, так и при патологии. В частности, утраченные при поражении участка коры функции берут на себя ее соседние поля или другое полушарие. Даже при поражении обширных областей коры вследствие кровоизлияния, их функции начинают выполнять соответствующие области противоположного полушария. 46.18 Функциональная ассиметрия коры БП, доминантность полушарий и ее роль в реализации высших психических функций ( речь, мышление и др.) Взаимоотношение полушарий большого мозга определяется как функция, обеспечивающая специализацию полушарий, облегчение выполнения регуляторных процессов, повышение надежности управления деятельностью органов, систем органов и организма в целом. Роль взаимоотношений полушарий большого мозга наиболее четко проявляется при анализе функциональной межполушарной асимметрии. Одно полушарие (у праворуких обычно левое) рассматривалось как ведущее для речи и других высших функций, другое (правое), или «второстепенное», считали находящимся под контролем «доминантного» левого. Выявленная первой речевая асимметрия полушарий мозга предопределила представление об эквипотенциальности полушарий большого мозга детей до появления речи. Считается, что асимметрия мозга формируется при созревании мозолистого тела. Повреждение левого полушария приводит, как правило, к низким показателям по тестам на вербальные способности. В то же время больные с повреждением правого полушария обычно плохо выполняли невербальные тесты, включавшие манипуляции с геометрическими фигурами, сборку головоломок, восполнение недостающих частей рисунков или фигур и другие задачи, связанные с оценкой формы, расстояния и пространственных отношений. Обнаружено, что повреждение правого полушария часто сопровождалось глубокими нарушениями ориентации и сознания. Такие больные плохо ориентируются в пространстве, не в состоянии найти дорогу к дому, в котором прожили много лет. С повреждением правого полушария были связаны также определенные виды агнозий, т. е. нарушений в узнавании или восприятии знакомой информации, восприятии глубины и пространственных взаимоотношений. Одной из самых интересных форм агнозии является агнозия на лица. Больной с такой агнозией не способен узнать знакомого лица, а иногда вообще не может отличать людей друг от друга. Узнавание других ситуаций и объектов, например, может быть при этом не нарушено. Дополнительные сведения, указывающие на специализацию правого полушария, были получены при наблюдении за больными, страдающими тяжелыми нарушениями речи, у которых, однако, часто сохраняется способность к пению. Правое полушарие обладает собственными высшими гностическими функциями. Существует представление, что межполушарная асимметрия в решающей мере зависит от функционального уровня переработки информации. В этом случае решающее значение придается не характеру стимула, а особенностям гностической задачи, стоящей перед наблюдателем. Принято считать, что правое полушарие специализировано в переработке информации на образном функциональном уровне, левое — на категориальном. Применение такого подхода позволяет снять ряд трудноразрешимых противоречий. Так, преимущество левого полушария, обнаруженное при чтении нотных и пальцевых знаков, объясняется тем, что эти процессы протекают на категориальном уровне переработки информации. Сравнение слов без их лингвистического анализа успешнее осуществляется при их адресации правой гемисфере, поскольку для решения этих задач достаточна переработка информации на образном функциональном уровне. В случаях латерального предъявления информации можно выделить три способа межполушарных взаимодействий, проявляющихся в процессах зрительного опознания. 1. Параллельная деятельность. Каждое полушарие перерабатывает информацию с использованием присущих ему механизмов. 2. Избирательная деятельность. Информация перерабатывается в «компетентном» полушарии. 3. Совместная деятельность. Оба полушария участвуют в переработке информации, последовательно играя ведущую роль на тех или иных этапах этого процесса. В правом полушарии осуществляется более полная оценка зрительных стимулов, тогда как в левом оценнваются наиболее существенные, значимые их признаки. Трудности в реализации левополушарной стратегии в этих условиях усугубляются еще и тем обстоятельством, что левое полушарие обладает недостаточными «способностями» к точной оценке отдельных элементов изображения. |