Зависимость от количества фермента При увеличении количества молекул фермента скорость реакции возрастает непрерывно и прямо пропорционально количеству фермента, т.к. большее количество молекул фермента производит большее число молекул продукта
Классификация и номенклатура ферментов
Номенклатура – названия индивидуальных соединений, их групп, классов, а также правила составления этих названий. Номенклатура ферментов бывает тривиальной (короткое рабочее название) и систематической. По систематической номенклатуре, принята в 1961г Международным союзом биохимии, можно точно идентифицировать фермент и его катализируемую реакцию.
Классификация – разделение чего либо по выбранным признакам.
Классификация ферментов основана на типе катализируемой химической реакции; На основании 6 типов химических реакций ферменты, которые их катализируют, подразделяют на 6 классов, в каждом из которых несколько подклассов и поподклассов (4-13); Каждый фермент имеет свой шифр КФ 1.1.1.1. Первая цифра обозначает класс, вторая - подкласс, третья - подподкласс, четвертая - порядковый номер фермента в его подподклассе (в порядке открытия). Название фермента состоит из 2 частей: 1 часть – название субстрата (субстратов), 2 часть – тип катализируемой реакции. Окончание – АЗА; Дополнительная информация, если необходима, пишется в конце и заключается в скобки: L-малат + НАДФ+ ↔ ПВК + СО2 + НАДН2 L-малат: НАДФ+ - оксидоредуктаза (декарбоксилирующая);
В правилах названия ферментов нет единого подхода. 1. Оксидоредуктазы
Катализируют окислительно-восстановительные реакции. В реакцию вступают 2 вещества и 2 образуются, одно окисляется, другое восстанавливается: Sвост + S’окисл ↔ S’вост + Sокисл
Оксидоредуктазы делятся на: дегидрогеназы (отщепляют Н от субстратов), оксидазы (переносят Н с субстрата на кислород), оксигеназы (включают кислород в молекулу субстрата), гидроксипероксидазы (разрушают перекиси водорода и органические перекиси).
Систематическое название включает в себя название донора е и Н+ через двоеточие название акцептора через тире – название класса: донор: акцептор ( косубстрат) оксидоредуктаза
R-CH2-OH + НАД+ ↔ R-CH=О + НАДН2
Систематическое название: Алкоголь: НАД+ оксидоредуктаза
Тривиальное название: алкогольдегидрогеназа. Шифр: КФ 1.1.1.1 Пируват + НАДН2 ↔ лактат + НАД+
Систематическое название: Лактат: НАД+ оксидоредуктаза
Тривиальное название: ЛДГ. Шифр: КФ 1.1.2.7 2. Трансферазы
Ферменты этого класса принимают участие в переносе атомных групп, молекулярных остатков от одного соединения к другому. В реакцию вступают 2 вещества и 2 образуются: S-G + S’ ↔ S + S’-G.
В зависимости от переносимых групп трансферазы делятся на: 1). фосфотрансферазы (киназы); 2). аминотрансферазы; 3). гликозилтрансферазы; 4). метилтрансферазы; 5). ацилтрансферазы.
Систематическое название: откуда: куда в какое положение–что–трансфераза
или донор: акцептор–транспортируемая группа– трансфераза
АТФ + D-гексоза ↔ АДФ + D- гексоза-6ф
Систематическое название: АТФ: D-гексоза-6-фосфотрансфераза
Тривиальное название: гексокиназа ФЕП + АДФ → ПВК + АТФ
Систематическое название: АТФ: ПВК-2-фосфотрансфераза
Тривиальное название: пируваткиназа 3. Гидролазы. Расщепляют ковалентную связь с присоединением молекулы воды.
В реакцию вступают 2 вещества и 2 образуются: S-G + Н2О ↔ S-ОН + G-Н.
В зависимости от характера гидролизуемой связи, различают подклассы: 1). гликозидазы – гидролиз гликозидов (лактоза – лактаза, мальтоза – мальтаза, сахароза – сахараза); 2). пептидазы – гидролиз пептидных связей; 3). эстеразы – разрыв связи в сложных эфирах.
Систематическое названиесубстрат–что отщепляется–гидролаза
или субстрат–гидролаза
Ацетилхолин + Н2О ↔ Ацетат + Холин
Систематическое название: Ацетилхолин-ацилгидролаза (Ацетилхолин-гидролаза)
Тривиальное название: Ацетилхолинэстераза Глюкозо-6ф + Н2О → глюкоза + Н3РО4
Систематическое название: Глюкозо-6ф-фосфогидролаза
Тривиальное название: Глюкозо-6ф-фосфотаза 4. Лиазы
Отщепление групп от субстратов по негидролитическому механизму с образованием двойных связей (или наоборот, присоединение по двойной связи). Реакции обратимы, за исключением отщепления СО2.
В реакцию вступает 1 вещество и 2 образуются (или наоборот): -SХ-SY- ↔ XY + -S=S-
Систематическое название субстрат: что отщепляется–лиаза
L-малат ↔ фумарат + Н2О
Систематическое название: L-малат: гидро–лиаза
Тривиальное название: фумараза 5. Изомеразы
Взаимопревращения оптических, геометрических, позиционных изомеров. В реакцию вступает 1 вещество и 1 образуется. Исходя из типа катализируемой реакции изомеризации выделяется несколько подклассов: 1) рацемазы; 2) эпимеразы; 3) таутамеразы; 4) цис,- трансизомеразы; 5) мутазы (при внутримолекулярном переносе группы); 6) цикло-, оксоизомеразы.
Систематическое название субстрат–вид изомеризации–изомераза или субстрат–продукт–изомераза
Фумаровая к-та ↔ малеиновая к-та
Систематическое название: фумарат–цис,транс–изомераза гл-6ф ↔ фр-6ф
Систематическое название: гл-6ф–фр-6ф–изомераза 6. Лигазы (синтетазы)
Соединение 2 молекул с использованием энергии макроэргических соединений (АТФ и др). В реакцию вступают 3 вещества, образуется 3 вещества.
Систематическое название субстрат: субстрат–лигаза (источник энергии)
АТФ + L-глутамат + NH4+ → АДФ + Фн + L-глутамин
Систематическое название: L-глутамат: аммиак–лигаза (АТФ → АДФ + Фн)
Тривиальное название: глутаминсинтетаза АТФ + ПВК + СО2 → АДФ + Фн + ЩУК
Систематическое название: ПВК: СО2–лигаза (АТФ → АДФ + Фн)
Тривиальное название: пируваткарбокилаза
10. Активаторы и ингибиторы ферментов: химическая природа, виды активирования и ингибирования ферментов. Биологическое и медицинское значение активаторов и ингибиторов ферментов.
Активаторы– это вещества, увеличивающие скорость ферментативной реакции. Виды активаторов: 1. Вещества, влияющие на область активного центра. К ним относятся ионы металлов (Na+, K+, Fe2+, Co2+, Cu2+, Ca2+, Zn2+, Mg2+, Mn2+ и др.). В ряде случаев ионы металлов выполняют функцию кофактора фермента. В других случаях они способствуют присоединению субстрата к активному центру фермента. Ионы металлов оказываются активаторами только в условиях дефицита их в организме. 2. Аллостерические эффекторы, которые связываются с аллостерическим (регуляторным) участком апофермента. Это связывание вызывает конформационные изменения в молекуле белка, приводящие к изменению структуры активного центра, что сказывается на связывании и превращении субстрата в активном центре. При этом активность фермента либо увеличивается (это аллостерические активаторы), либо уменьшается (это аллостерические ингибиторы). Аллостерическими эффекторами ферментов наиболее часто выступают различные метаболиты, а также гормоны, ионы металлов, нуклеозиды - АТФ, АДФ, АМФ. 3. Вещества, вызывающие модификации, не затрагивающие активный центр фермента. Возможно несколько вариантов таких модификаций: - активация путём присоединения специфической модифицирующей группы к молекуле фермента. Пример: регуляция активности липазы. - активация путёмперехода неактивного предшественника - профермента в активный фермент за счёт частичного протеолиза. - активатор вызывает диссоциацию субъединиц фермента, имеющего четвертичную структуру (отщепление одной из субъединиц фермента)
Ингибитор – это вещество, вызывающее специфичное снижение активности фермента.
По прочности связывания фермента с ингибитором ингибирование бывает обра тимым и необратимым.По отношению ингибитора к активному центру фермента ингибирование делят на конкурентное и неконкурентное.
НЕОБРАТИМОЕ ИНГИБИРОВАНИЕ При необратимом ингибировании происходит связывание или разрушение функ-циональных групп фермента, необходимых для проявления его активности. Например: ингибирование ацетилхолинэстеразы в нервных синапсах предотвращает разрушение ацетилхолина в синаптической щели, в результате чего отсутствует дальнейшая передача сигнала по нерву.
КОНКУРЕНТНОЕ ИНГИБИРОВАНИЕ
При таком виде ингибирования ингибитор по своей структуре похож на субстрат фермента. Поэтому он соперничает с субстратом за с активный центр, что приводит к уменьшению связывания субстрата с ферментом и нарушение его превращения. Особенностью конкурентного ингибирования является возможность усилить или ослабить ингибирование через изменение концентрации субстрата. Например, конкурентное взаимодействие этанола и метанола за активный центр алкогольдегидрогеназы.
НЕКОНКУРЕНТНОЕ ИНГИБИРОВАНИЕ Данный вид ингибирования связан с присоединением ингибитора не в активном центре, а в другом месте молекулы. Например, синильная кислота (цианиды) связывается с гемовым железом ферментов дыхательной цепи.
ИСПОЛЬЗОВАНИЕ ФЕРМЕНТОВ И ИХ АКТИВАТОРОВ И ИНГИБИТОРОВ В МЕДИЦИНЕ Использование ферментов в медицине происходит по трем направлениям: • энзимодиагностика • энзимотерапия • применение ингибиторов ферментов
11. Принципы количественного и качественного определения активности ферментов. Единицы активности. Определение активности ферментов в диагностике заболеваний. Применение ферментов как лекарственных препаратов
Единица активности (Е) – это количество фермента, которое катализирует превращение одного микромоля субстрата в мин при стандартных условиях (в оптимуме рН, при избытке субстрата, температуре 37 или 20º С)
ПРИНЦИПЫ ОПРЕДЕЛЕНИЯ АКТИВНОСТИ ФЕРМЕНТОВ
1.Активность фермента выражается в скорости накопления продукта или скорости убыли субстрата в пересчете на количество материала, содержащего фермент.
2. Создание стандартных условий, чтобы можно было сравнивать результаты полученные в разных лабораториях – t=25°С и оптимальная рН;
3. Избыток субстрата, чтобы работали все имеющиеся молекулы фермента;
Определение активности ферментов в диагностике заболеваний.
Энзимодиагностика (энзим[ы] + греч. diagnostikos способный распознавать) – методы диагностики болезней, патологических состояний и процессов, основанные на определении активности ферментов в биологических жидкостях.
Направления энзимодиагностики:
1) Определение активности органо-, органеллоспецифических ферментов и их изоферментов.
Определение в биологических жидкостях активности ферментов и их изоферментов позволяет установить локализацию патологического процесса, его стадию, выраженность, а также эффективность его лечения.
Ферменты плазмы крови по происхождению можно разделить на 3 группы:
1) секреторные ферменты - секретируются определенными органами в плазму крови, где и выполняют свою функцию. Например: ЛПЛ, ЛХАТ, ферменты свертывающей и противосвертывающей системы крови;
2) экскреторные ферменты - синтезируются в железах ЖКТ, выделяются в просвет ЖКТ, где обеспечивают процесс пищеварения. В кровь эти ферменты попадают при повреждении желез. Например, при панкреатите в крови обнаруживается панкреатическая липаза, амилаза, трипсин и т.д., при воспалении слюнных желез - амилаза слюны.
3) клеточные ферменты - функционируют только внутри клеток, в плазму крови они попадают во время повреждения (под действием медиаторов воспаления и т.д.) и гибели клеток (при некрозе). К ним относятся общие, органо- и органеллоспецифические ферменты.
За счет естественной гибели клеток клеточные ферменты имеют в плазме крови постоянно низкую активность. При поражении органа происходит значительный выход ферментов из его клеток и многократное увеличение активности этих ферментов в плазме крови.
Например:
Аминотрансферазы. Локализуются в митохондриях, обеспечивают взаимопревращения аминокислот и кетокислот: АК1 + КК2 ↔ КК1 + АК2.
ЛДГ. Локализуется в цитозоле, обеспечивает взаимопревращения ПВК и лактата.
В сыворотке крови повышена активность амилазы при остром панкреатите, кисте поджелудочной железы; γ-глутамилтранспептидазы - при остром инфекционном или токсическом гепатите, хроническом гепатите, циррозе печени; кислой фосфатазы - при карциноме простаты; щелочной фосфатазы - при заболеваниях костей, закупорке желчных протоков, при беременности и у детей.
Определение активности ферментов с диагностической целью проводят также в моче, слюне, ликворе и биоптатах органов и тканей.
2) Определение активности ферментов и их констант (Km, t, pH).
Это направление используют для диагностики наследственных патологий и выявления механизмов патогенеза ряда заболеваний.
3) Определение концентрации органических веществ с помощью ферментов.
Использование ферментов в качестве реактивов позволяет определять концентрацию органических веществ с высокой точностью, так как ферменты обладают высокой чувствительностью и избирательностью к своим субстратам. Лекарственные препараты на основе ферментов. В качестве лекарственных препаратов наиболее широко используются гидролитические ферменты.
1). Протеолитические ферменты применяются при нарушении пищеварения. Например:
а). Экстракты слизистой оболочки желудка, основным действующим веществом которых является пепсин. Это препараты абомин и ацидинпепсин, их в основном используют для коррекции секреторной дисфункции желудка.
б). Панкреатические энзимы, представленные амилазой, липазой, трипсином и химотрипсином. Это препараты панкреатин, мезимфорте, панцитрат, креон, их используются для коррекции нарушений процесса пищеварения, а также для регуляции функций поджелудочной железы.
в). Комбинированные ферменты, содержащие панкреатин в комбинации с компонентами желчи, гемицеллюлозой. Это препараты дигестал, фестал, панзинорм-форте, энзистал. Их назначают при недостаточной внешнесекреторной функции поджелудочной железы в сочетании с патологией печени, желчевыводящей системы, при нарушении жевательной функции, малоподвижном образе жизни, кратковременных погрешностях в еде.
г). Растительные энзимы, представленные папаином, грибковой амилазой, протеазой, липазой и др. ферментами. Препараты пепфиз и ораза. Папаин и протеазы гидролизируют белки, грибковая амилаза - углеводы, липаза - жиры.
д). Дисахаридазы. Например, тилактаза - пищеварительный фермент представляющий собой лактазу, которая находится в щеточной кайме слизистой оболочки тощей кишки и проксимального отдела подвздошной кишки. Расщепляет лактозу на простые сахара.
2). Протеолитические препараты применяют местно, в виде аппликаций или орошений, при первичной обработке ран и ожогов. Гидролизуя белки некротизированных тканей, ферменты способствуют очищению раны, уменьшению воспаления и ускорению заживления.
Например, коллагеназа вызывает деструкцию коллагена при этом жизнеспособные мышцы, грануляционная ткань и эпителий остаются интактными. При гнойных ранах коллагеназа способствует быстрому очищению от нежизнеспособных тканей и экссудата, более раннему появлению грануляционной ткани и эпителизации, предупреждает развитие грубых (типа келоидных) рубцов, способствует сохранению функции суставов.
3). Гиалуронидазы – (лидаза, ронидаза) – ферменты, специфическим субстратом которых является гиалуронованная кислота, основа межклеточного матрикса соединительной ткани. Показателями к их применению являются рубцы после ожогов и операций, гематомы, контрактуры суставов и т.д. Лечебный эффект проявляется размягчением рубцов, рассасыванием гематом, появлением подвижности в суставах.
4). Протеолитические ферменты стрептокиназу, урокиназу применяют для предотвращения и лечения тромбозов, эмболии, инфаркта миокарда, закупорки сосудов сетчатки глаза. Стрептокиназа и урокиназа способствует превращению плазминогена в плазмин, который лизирует тромб.
5). Нуклеазы (ДНК-аза, РНК-аза) используют при лечении некоторых вирусных заболеваний (герпес, аденовирусный конъюктивит, вирусный менингит, ОРВИ и др.). Фермент разрушает ДНК вируса, не повреждая вместе с тем ДНК клеток макроорганизма. α-ДНКаза в препарате пульмозим используется как муколитик, она расщепляет внеклеточную ДНК, содержащуюся в большом количестве в вязком бронхиальном секрете.
6). Бактериолитическиеферменты. Препарат «лизоамидаза» содержит комплекс ферментов: мурамидазу, амидазу, пептидазу и высокомолекулярный полисахарид. Препарат обладает наибольшей бактерицидной активностью по отношению к грамположительным бактериям: стафилакоккам, стрептококкам, а также менингококкам, гонококкам. Особенность, препарат показывает высокую бактерицидную эффективность вне зависимости от устойчивости бактерий к действию антибиотиков.
12.Биологические мембраны. Мембранные структуры клетки (плазматическая мембрана, аппарат Гольджи, ЭПР, лизосомы, митохондрии и др.).Свойства и функции биологических мембран.Строение мембран. Жидкостно-мозаическая модель плазматической мембраны.
Плазматическая мембрана – ограничивает содержимое клетки от внешней среды; осуществляет контакт с другими клетками, получение, обработку и передачу информации внутрь клетки, поддержание постоянства внутренней среды.
Ядерные мембраны (внешняя и внутренняя) – образуют ядерную оболочку, которая отделяет хромосомный материал от цитоплазматических органелл; через поры ядерной оболочки происходит транспорт белков и нуклеиновых кислот в ядро и из ядра.
Принцип строения мембранных органелл Мембранные органеллы представляют собой замкнутые и изолированные участки (компартменты) в гиалоплазме, имеющие свою внутреннюю структуру. Стенка их состоит из билипидной мембраны и белков подобно плазмолемме. Однако билипидные мембраны органелл имеют особенности: толщина билипидных мембран органелл меньше, чем плазмолеммы (7 нм против 10 нм), мембранные отличаются по количеству и по содержанию белков, встроенных в них. Однако, несмотря на различия, мембраны органелл имеют одинаковый принцип строения, поэтому они обладают способностью взаимодействовать друг с другом, встраиваться, сливаться, разъединяться, отшнуровываться. Общий принцип строения мембран органелл можно объяснить тем, что все они образуются в эндоплазматической сети, а затем происходит их функциональная перестройка в комплексе Гольджи.
Митохондрии Митохондрии — наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью. Стенка митохондрий образована двумя билипидными мембранами, разделенными пространством в 10—20 нм. При этом внешняя мембрана охватывает по периферии всю митохондрию в виде мешка и отграничивает ее от гиалоплазмы. Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутри митохондрии складки — кристы. Внутренняя среда митохондрии (митохондриальный матрикс) имеет тонкозернистое строение и содержит гранулы (митохондриальные ДНК и рибосомы). Функция митохондрий — образование энергии в виде АТФ. Источником образования энергии в митохондриях является ПВК (пируват), которая образуется из белков, жиров и углеводов в гиалоплазме. Окисление пирувата происходит в митохондриальном матриксе, а на кристах митохондрий осуществляется перенос электронов, фосфорилирование АДФ и образование АТФ. Образующаяся в митохондриях АТФ является единственной формой энергии, которая используется клеткой для выполнения различных процессов. В течение жизни клетки происходит неоднократное обновление митохондрий. Восстанавливаются они делением старых митохондрий. Эндоплазматическая сеть Эндоплазматическая сеть (ЭПС) в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка состоит из билипидной мембраны. Различают две разновидности ЭПС: 1) зернистую (гранулярную, или шероховатую); 2) незернистую (или гладкую). На наружной поверхности мембран зернистой ЭПС содержатся прикрепленные рибосомы. В цитоплазме при электронно-микроскопическом исследовании можно обнаружить два вида ЭПС, однако один из них преобладает, что и определяет функциональную специфичность клетки. Эти две разновидности ЭПС не являются самостоятельными и обособленными формами, так как при более детальном исследовании можно обнаружить переход одной разновидности в другую. Функции зернистой ЭПС: 1) синтез белков, предназначенных для выведения из клетки (на экспорт); 2) отделение (сегрегация) синтезированного продукта от гиалоплазмы; 3) конденсация и модификация синтезированного белка; 4) транспорт синтезированных продуктов в цистерны пластинчатого комплекса; 5) синтез компонентов билипидных мембран Функции гладкой ЭПС: 1) участие в синтезе гликогена; 2) синтез липидов; 3) дезинтоксикационная функция (нейтрализация токсических веществ посредством соединения их с другими веществами).
Пластинчатый комплекс Гольджи Пластинчатый комплекс называют транспортным аппаратом клетки. Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы — диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена. В диктиосоме различают два полюса: цисполюс (направленный основанием к ядру) и трансполюс (направленный в сторону цитолеммы). Установлено, что к цисполюсу подходят транспортные вакуоли, несущие в комплекс Гольджи продукты, синтезированные в ЭПС. От трансполюса отшнуровываются пузырьки, несущие секрет к плазмолемме для его высвобождения из клетки. Часть мелких пузырьков, заполненных белками-ферментами, остается в цитоплазме и носит название лизосом. Функция пластинчатого комплекса: 1) транспортная (выводит из клетки синтезированные в ней продукты); 2) конденсация и модификация веществ, синтезированных в зернистой ЭПС; 3) образование лизосом (совместно с зернистой ЭПС); 4) участие в обмене углеводов; 5) синтез молекул, образующих гликокаликс цитолеммы; 6) синтез, накопление, выведение муцинов (слизи); 7) модификация мембран, синтезированных в ЭПС и превращение их в мембраны плазмолеммы.
Лизосомы Лизосомы — наиболее мелкие органеллы цитоплазмы, представляют собой тельца, ограниченные билипидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (более тридцати видов гидролаз), способных расщеплять любые полимерные соединения (белки, жиры, углеводы), их комплексы на мономерные фрагменты. Функция лизосом — обеспечение внутриклеточного пищеварения, т. е. расщепление как экзогенных, так и эндогенных биополимерных веществ. Классификация лизосом: 1) первичные лизосомы — электронно-плотные тельца; 2) вторичные лизосомы — фаголизосомы, в том числе аутофаголизосомы; 3) третичные лизосомы или остаточные тельца.
Пероксисомы Пероксисомы — микротельца цитоплазмы (0,1—1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.
В 1972 г. Сингер и Николсон (Singer, Nicolson) предложили жидкостно-мозаичную модель мембраны, согласно которой белковые молекулы плавают в жидком фосфолипидном бислое. Они образуют в нем как бы своеобразную мозаику, но поскольку бислой этот жидкий, то и сам мозаичный узор не жестко фиксирован; белки могут менять в нем свое положение. Покрывающая клетку тонкая мембрана напоминает пленку мыльного пузыря — она тоже все время «переливается».
На рисунке представлено плоскостное изображение жидкостно-мозаичной модели мембраны и ее трехмерная модель.
|