Главная страница
Навигация по странице:

  • 13.Жизненный и митотический (пролиферативный) цикл клетки. Фазы митотического цикла, их характеристика и значение.

  • Анафаза

  • Высокоповторяющиеся

  • Уникальные последовательности ДНК

  • УАГ. УАА. УГА. бессмысленные триплеты.

  • 1. Биология наука о живых системах, закономерностях и механизмах их возникновения, существования и развития. Предмет биологии. Биологические науки, их задачи, объекты изучения. Значение биологии как базисной дисциплины в подготовке врача


    Скачать 4.99 Mb.
    Название1. Биология наука о живых системах, закономерностях и механизмах их возникновения, существования и развития. Предмет биологии. Биологические науки, их задачи, объекты изучения. Значение биологии как базисной дисциплины в подготовке врача
    Дата19.09.2022
    Размер4.99 Mb.
    Формат файлаdoc
    Имя файлаk_ekzamenu_po_bio.doc
    ТипЗакон
    #685926
    страница5 из 39
    1   2   3   4   5   6   7   8   9   ...   39

    2.3.4. Внутриклеточный поток энергии



    Поток энергии у представителей разных групп организмов обеспечивается механизмами энергоснабжения —брожением, фото- или хемосинтезом, дыханием.

    Центральная роль в биоэнергетике клеток животных принадлежит дыхательному обмену. Он включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот, а также использование выделяемой энергии для образования высококалорийного клеточного «топлива» в виде аденозинтрифосфата (АТФ). Энергия АТФ, непосредственно или будучи перенесена на другие макроэргические соединения (например, креатинфосфат), в разнообразных процессах преобразуется в тот или иной вид работы химическую (синтезы), осмотическую (поддержание перепадов концентрации веществ), электрическую, механическую, ре-гуляторную. Макроэргическим называют соединение, в химических связях которого запасена энергия в форме, доступной для использования в биологических процессах. Универсальным соединением такого рода служит АТФ. Основное количество энергии заключено в связи, присоединяющей третий остаток фосфорной кислоты.

    Рис. 2.8. Поток энергии в клетке
    Среди органелл животной клетки особое место в дыхательном обмене принадлежит митохондриям, выполняющим функцию окислительного фосфорилирования, а также матриксу цитоплазмы, в котором протекает процесс бескислородного расщепления глюкозы — анаэробный гликолиз (рис. 2.8). Из двух механизмов, обеспечивающих жизнедеятельность клетки энергией, анаэробный гликолиз менее эффективен. В связи с неполным (в отсутствие кислорода) окислением, прежде всего глюкозы, в процессе гликолиза для нужд клетки извлекается не более 10% энергии. Недоокисленные продукты гликолиза (пируват) поступают в митохондрий, где в условиях полного окисления, сопряженного с фосфорилированием АДФ до АТФ, отдают для нужд клетки оставшуюся в их химических связях энергию.

    Из преобразователей энергии химических связей АТФ в работу наиболее изучена механохимическая система поперечно-полосатой мышцы. Она состоит из сократительных белков (актомиозиновый комплекс) и фермента аденозинтрифосфатазы, расщепляющего АТФ с высвобождением энергии.

    Особенность потока энергии растительной клетки состоит в наличии фотосинтеза механизма преобразования энергии солнечного света в энергию химических связей органических веществ.

    Механизмы энергообеспечения клетки отличаются эффективностью. Коэффициенты полезного действия хлоропласта и митохондрий, достигая соответственно 25 и 45—60%, существенно превосходят аналогичный показатель паровой машины (8%) или двигателя внутреннего сгорания (17%).

    2.3.5. Внутриклеточный поток веществ



    Реакции дыхательного обмена не только поставляют энергию, но и снабжают клетку строительными блоками для синтеза разнообразных молекул. Ими являются многие продукты расщепления пищевых веществ. Особая роль в этом принадлежит одному из этапов дыхательного обмена — циклу Кребса,осуществля-емому в митохондриях. Через этот цикл проходит путь углеродных атомов (углеродных скелетов) большинства соединений, служащих промежуточными продуктами синтеза химических компонентов клетки. В цикле Кребса происходит выбор пути превращения того или иного соединения, а также переключение обмена клетки с одного пути на другой, например с углеводного на жировой. Таким образом, дыхательный обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и образования углеводов, белков, жиров, нуклеиновых кислот (рис. 2.9).


    Рис. 2.9. Взаимосвязь внутриклеточного обмена белков, жиров и углеводов через цикл Кребса


    13.Жизненный и митотический (пролиферативный) цикл клетки. Фазы митотического цикла, их характеристика и значение. 

    Клеточный цикл клетки – период ее существования от появления до собственного деления или гибели. Митотический и жизненный цикл совпадают в часто делящихся клетках.

    Жизненный цикл клетки

    - интерфаза

    - собственный цикл деления

    Растущая неделящаяся клетка отличается от делящихся клеток. Интерфаза длиннее клеточного деления. Типичный жизненный цикл клетки составляет 20 часов, период деления – 1 час. При оптимальных условиях для однотипных клеток продолжительность клеточного цикла (время, необходимое для выполнения точной программы, заложенной в клетке) одинаково. При описании жизненного цикла выделяют несколько фаз. Впервые они были установлены в 1953 году А.Хоуардом и С.Пемгом.

    S - фаза синтеза ДНК

    G1 – постмитотическая (пресинтетическая) фаза

    G2 - постсинтетическая (премитотическая) фаза

    М – митоз
    После формирования клетки в G1 происходит увеличение объема ядра и цитоплазмы. Синтез белков, синтез РНК, синтез АТФ(30-40% клеточного цикла) усиливается. После G1 фазы начинается S фаза. Происходит точная репликация ДНК и редупликация хромосом. Синтез ДНК происходит по полуконсервативному механизму: каждая цепь ДНК копируется. Синтез происходит по участкам. Существует система, устраняющая ошибки при редупликации ДНК (фоторепарация, дорепродуктивная и пострепродуктивная репарации). Процесс репарации очень долог: до 20 часов, и сложен. Ферменты – рестриктазы вырезают неподходящий участок ДНК и достраивают его заново. Репарации никогда не протекают со 100% эффективностью, если бы это было, Не существовала бы эволюционная изменчивость. Пострепродуктивная репарация происходит в G2 фазе. В G2 фазе(10-20%) происходит синтез белка. Метаболический смысл не ясен. Некоторые клетки в течение длительного времени не выполняют своих функций, в них не протекают метаболические процессы (клетка заклинена в G1или G2 – это G0 фаза – фаза относительного покоя). Для каждой фазы есть свое время. S, G2 не зависят от изменения внешней среды, время постоянно. У человека S фаза – 6-10 часов, G2 фаза – 2-5 часов, G1 фаза по продолжительности варьируется. Если долгая – клетка покоящаяся. Многие клетки (особенно дифференцированные) не способны к делению. Это позволяет им выполнять свои функции в максимальном количестве с максимальной интенсивностью. Особые регуляторные механизмы удерживают клетки в состоянии покоя. Они выполняют все функции, синтезируют белок. Однако многие дифференцированные клетки способны к делению, митоз делится на 2 фазы: собственно митоз и цитокинез. Митоз делят на 4 фазы: про, мето ана ,тело.

    Профаза: хромосомы спирализуются и приобретают вид нитей. Ядрышко разрушается, распадается ядерная оболочка, в цитоплазме уменьшается количество структур шероховатой сети. Резко сокращается число полисом, центриоли клеточного центра расходятся к полюсам клетки, между ними микротрубочки образуют веретено деления.

    Метафаза: Заканчивается образование веретена деления, хромосомы выстраиваются в экваториальной плоскости (метафазная пластинка). Микротрубочки веретена деления связаны с кинетохорами хромосом. Каждая хромосома продольно расщепляется на две хроматиды, соединенные в области кинетохора.

    Анафаза: Связь между хроматидами нарушается и они перемещаются к полюсам клетки. По завершении движения на полюсах собирается два равноценных полных набора хромосом.

    Телофаза: Реконструируется интерфазные ядра дочерних клеток. Хромосомы деспирализуются. Образуются ядрышки. Разрушается веретено деления. Материнская клетка делится на две дочерние.

    Биологическая роль митоза: точное, идентичное распределение дочерних хромосом с содержащимся в них наследственным материалом в ядрах. Метафазные хромосомы укомплектованы (как у бактериофага). Они изучаются при медицинском анализе для определения кариотипа. В результате деления возникают 2 клетки с одинаковым набором наследственной информации(2п2с). Продолжительность жизни клетки зависит от гормонального баланса, возраста, условий среды, размера, плоидности, количества ядер, степени дифференциации (чем больше дифференцирована клетка, тем меньше она делится митозом), мало зависит от пола. Митотическая активность в разных клетках приходится на разное время (часто на утренние часы), поэтому плановые хирургические операции проводят утром.
    14.Наследственность и изменчивость – свойства, определяющие непрерывность существования и развития жизни. Уровни структурно-функциональной организации наследственного материала: генный, хромосомный и геномный.
    Жизнь как особое явление характеризуется продолжительностью существования во времени, что обеспечивается преемственностью поколений живых систем. Непрерывность существования и историческое развитие живой природы обусловлены двумя свойствами живого: наследственностью и изменчивостью. Наследственность – свойство живых организмов, обеспечивающее материальную преемственность онтогенеза в определенных условиях внешней среды. Гены детерминируют последовательность полипептидной цепи. Наследование – передача информации от одного поколения к другому. Благодаря наследственности стало возможно существование популяций, видов и других групп. В ходе возникновения и развития жизни на Земле наследственность играла решающую роль, т.к. закрепляла в ряду поколений биологически полезные эволюционные приобретения, обеспечивая определенный консерватизм организации живых систем. Наследственность является одним из главных факторов эволюции. Продолжительное существование живой природы во времени на фоне меняющихся условий было бы невозможным, если бы живые системы не обладали способностью к приобретению и сохранению некоторых изменений, полезных в новых условиях среды. Свойство живых систем приобретать изменения и существовать в различных вариантах - изменчивость. На популяционно-видовом уровне организации это свойство проявляется в наличии генетических различий между отдельными популяциями вида, что лежит в основе образования новых видов. Изменчивость также является ведущим фактором эволюции. Т.о. эти два свойства разнонаправлены, но в живой природе они образуют непрерывное единство, делающее возможным существование жизни в разнообразных условиях Наследственность и изменчивость как важнейшие свойства любой живой системы обеспечивается функционированием материального субстрата. Генетический материал должен отвечать следующим требованиям:1)способность к самовоспроизведению 2)сохранять постоянной свою организацию 3)приобретать изменения и воспроизводить их. Выделяют три уровня организации генетического материала: генный, хромосомный и геномный. На каждом из них проявляются основные свойства материала наследственности и изменчивости и определенные закономерности его передачи и функционирования.



    15.Структура ДНК, её свойства и функции. Репликация ДНК.
    ДНК состоит из нуклеотидов, в состав которых входят сахар - дезоксирибоза, фосфат и одно из азотистых оснований – аденин, гуанин, тимин, цитозин. Молекулы ДНК включают две полинуклеотидные цепи, связанные между собой определенным образом. Уотсон и Крик предположили, что эти цепи соединяются друг с другом водородными связями между их азотистыми основаниями по принципу комплементарности. Аденин одной цепи соединяется двумя водородными связями с Тимином другой цепи, а между гуанином и цитозином разных цепей образуются три водородные связи. Такое соединение азотистых оснований обеспечивает прочную связь двух цепей и сохранение равного расстояния между ними на всем протяжении. Другой важной особенностью двух полинуклеотидных цепей в молекуле ДНК является их антипараллельность:5-конец одной цепи соединяется с 3-концом другой и наоборот. Данные рентгеноструктурного анализа показали, что молекула ДНК, состоящая из двух цепей, образует спираль, закрученную вокруг своей оси. Диаметр спирали 2 нм, длина шага 3,4 нм. В каждый виток входит 10 пар нуклеотидов. Т.о. в структурной организации молекулы ДНК можно выделить первичную структуру - полинуклеотидную цепь, вторичную - две комплементарные и антипараллельные цепи и третичную

    Структуру - трехмерную спираль.

    ДНК способна к самокопированию - репликация. В процессе репликации на каждой полинуклеотидной цепи материнской молекулы ДНК синтезируется комплементарная ей цепь. В итоге из одной двойной спирали ДНК образуются две идентичные двойные спирали. Такой способ удвоения молекул, при котором каждая дочерняя молекула одну материнскую и одну вновь синтезированную цепь, называется полуконсервативным. Для осуществления репликации материнской ДНК должны быть отделены друг от друга, чтобы стать матрицами, на которых будут синтезироваться комплементарные цепи дочерних молекул. С помощью фермента геликазы двойная спираль ДНК в отдельных зонах расплетается. Образующиеся при этом одноцепочечные участки связываются специальными дестабилизирующими белками. Молекулы этих белков выстраиваются вдоль полинуклеотидных цепей, растягивая их остов и делая азотистые основания доступными для связывания с комплементарными нуклеотидами. Области расхождения полинуклеотидных цепей в зонах репликации называют репликационными вилками. В каждой такой области при участии фермента ДНК-полимеразы синтезируется ДНК двух новых дочерних молекул. В процессе синтеза репликационная вилка движется вдоль материнской спирали, захватывая все новые зоны. Конечным результатом репликации является образование двух молекул ДНК, нуклеотидная последовательность которых идентична таковой в материнской двойной спирали ДНК,




    16.Классификация нуклеотидных последовательностей в геноме эукариот (уникальные и повторяющиеся последовательности).

    Универсальные химические соединения – нуклеиновые кислоты. Они состоят из 3 компонентов, связанных между собой: азотистого основания (А,Г,Ц,Т,У), 2-дезокси – Д – рибозы, Д – рибозы и остатка фосфорной кислоты. Молекулярная масса ДНК от 200000 до нескольких миллионов дальтон. Длина ДНК у млекопитающих до 1 метра, у эукариот ДНК почти полностью находится внутри ядра. У определенного вида в соматических клетках количество ДНК одинаково и зависит от числа хромосом. Каждый живой организм имеет свою собственную последовательность ДНК (нуклеотидный состав ДНК). Поэтому она используется в медицине и криминалистике (последовательность нуклеотидов у человека индивидуальна). Нуклеотидный состав соматических клеток постоянен в любом возрасте, при любых физиологических обстоятельствах. Молекулы ДНК идеально подходят для хранения информации благодаря стабильности, сложному строению, гигантским размерам. Именно они и позволяют информации из ядра передаваться в цитоплазму на рибосомы. Для этих целей служит посредник – РНК (м-РНК, и-РНК), которая живет меньше - это способ превращения матрицы ДНК в мобильную форму. Кодом в молекуле ДНК является порядок расположения пар нуклеотидов. Участок молекулы ДНК, несущий информацию о строении одного белка или макромолекулы называется геном. На каждом участке ДНК в один ген синтезируется своя и-РНК. Молекула ДНК эукариотической клетки несет как бы избыточную информацию, что объясняется тем, что некоторые последовательности ДНК повторяются несколько раз и присутствуют в виде нескольких копий(100,1000 и более). Такие последовательности – повторяющиеся, если нуклеотидная последовательность находится в единственном числе – уникальная последовательность. Повторяющиеся последовательности бывают: высокоповторяющиеся (повторяются млн. или более раз), умеренно повторяющиеся(1000 – 100000 копий, чаще 300). Высокоповторяющиеся не транскрибируются, но подвергаются репликации в первую очередь. Участвуют в конъюгации хромосом во время мейоза. Умеренно повторяющиеся последовательности могут перемещаться по геному и переходить из одного участка ДНК в другой – мобильные (прыгающие) гены. Перемещаясь из одного участка ДНК в другой? могут захватывать чужие участки генов, переносить их в другое место и вызывать мутации. Любая клетка содержит латентный онкоген. Мобильные гены могут запустить латентный ген рака. Уникальные последовательности ДНК не имеют копий в геноме и транскрибируются.



    17.Мутации, их классификации и механизмы возникновения. Медицинское и эволюционное значение.
    Мутация – внезапное наследственное изменение какого-либо фенотипического признака, вызванное резким структурным или функциональным изменением.

    Генные мутации связаны с изменением внутренней структуры генов, что превращает одни аллели в другие. Можно выделить несколько типов генных мутаций на молекулярном уровне:

    - замена пар нуклеотидов

    - делеция

    - вставка нуклеотида

    - перестановка (инверсия) участка гена.

    Замена пар нуклеотидов. Замена пуринового основания на другое пуриновое, или одного пиримидинового на другое пиримидиновое – транзиция. Замена пуринового основания на пиримидиновое и наоборот – трансверсия. При замене нуклеотидов в структурных генах происходит изменение смысла гена – возникают миссенс-мутации. При этом одна аминокислота в полипептиде замещается другой. Фенотипическое проявление мутации зависит от положения аминокислоты в полипептиде. При замене последовательности ЦТЦ на ЦАЦ возникает серповидно-клеточная анемия. Образуется новый полипептид и гемоглобин имеет совсем другие свойства. Некоторые миссенс-мутации приводят к возникновению фермента, обладающего высокой активностью в одних условиях и средней в других условиях. Т.к. генетический код вырожден, то при замене триплетов, кодирующий одну и ту же аминокислоту, мутации не проявляются. Другой вид мутаций – нонсенс - мутации. При этих мутациях при замене одного нуклеотида другим образуются бессмысленные триплеты. Синтез полипептида прекращается и белок имеет совсем иные свойства. УАГ. УАА. УГА. бессмысленные триплеты.

    Делеция или вставка одного или нескольких нуклеотидов ведут за собой утрату или вставку одной или нескольких аминокислот в полипептиде. эффекта может не быть. Если происходят делеция или вставка 1 нуклеотида (или другого числа нуклеотидов не кратного 3), наблюдается сдвиг рамки считывания, при этом нарушается структура полипептида.

    Большинство изменений молекулярной структуры генов приводит к новым формам считывания генетической информации, которая реализуется в метаболических путях и биохимических реакциях, появляются новые свойства клеток и всего организма. В организме происходит большое количество мутаций. Они затрагивают интеллект, поведение, метаболические признаки и т.д. мутации, изменяющие видимые морфологические признаки – видимые (мутация альбинизма). Нормальный доминантный ген превращается в рецессивный, выработка меланина прекращается, фенотипически проявляется белой окраской волос и глаз. Есть группа биохимических мутаций, которые выявляются с помощью сложных биохимических способов. Например, у человека синтезируется ряд ферментов, осуществляющих превращение лактозы в галактозу. При отсутствии фермента-лактазы происходит брожение в толстом кишечнике, газообразование и др. могут быть детская и взрослая формы. При накоплении галактозы – галактоземия, которая может привести к умственной отсталости.

    Мутации, нарушающие жизнь – летальные, полулетальные и сублетальные.

    Летальные – гибель зиготы или развившегося организма на определенной стадии эмбриогенеза – выкидыши.

    Полулетальные и сублетальные ослабляют жизнеспособность организма или отдельных клеток (например, брахидактилия – гомозиготы погибают).
    1   2   3   4   5   6   7   8   9   ...   39


    написать администратору сайта