Коллоквиум 1 по биологии. 1 Биология как наука. Методы научного познания. Биология это прежде всего, основа медицины. Медицина, взятая в плане теории это прежде всего общая биология
Скачать 281.85 Kb.
|
100-200 нм, которые могут образовывать отдельные сгущения.17.Компликс Гольджи , его строение и функции. Лизосомы. Их строение функций, типы лизосом. .Строение пластинчатого комплекса. В основе строения пластинчатого комплекса, как и в основе строения большинства клеточных органелл, лежат липопротеидные мембраны, толщиной. Данные электронной микроскопии показали, что пластинчатый комплекс является неоднородным образованием. Центральной, наиболее типичной и постоянной структурой аппарата Гольджи является система уплощенных цистерн, составляющих стопку или колонку прилегающих друг к другу овальных или округлых образований (диктиосома). В периферической части цистерн (в типичных случаях) формируется вакуолярная часть комплекса Гольджи, состоящая из ограниченных мембраной пузырьков разных размеров. В живой клетке пластинчатый комплекс располагается около ядра. Форма пластинчатого комплекса варьирует в зависимости от функционального состояния клетки. Функции пластинчатого комплекса длительное время сводили к участию в оформлении секреторных гранул, в секреции и транспорте. Комплекс Гольджи является упаковочным «цехом» в клетке, конденсационной мембраной, концентрируя в виде капель или гранул вещества, вырабатываемые клеткой. Однако в последнее время установлено, что он выполняет и ряд других функций; в нем происходит дегидратация (обезвоживание) белковых продуктов секреторных гранул, сегрегация (укрупнение) белковых молекул, синтез сложных комплексных соединений: гликопротеидов, гликолипидов, мукополисахаридов, зрелых молекул иммуноглобулинов и т.д. Полагают, что пластинчатый комплекс дает начало мелким пузырькам, которые играют роль транспортных структур, связывающих пластинчатый комплекс с цитоплазматическим ретикулумом и клеточной оболочкой. Считают также, что он принимает участие в образовании первичных лизосом. Комплекс Гольджи участвует в формировании акросомы сперматозоида. Из цистерн аппарата Гольджи, так же как из ЭПС, могут возникать пероксисомы. Лизосомы. Образование и состав Представление о лизосомах связаны с понятием о так называемых «микротельцах», впервые описанных Роденом, в проксимальных канальцах почки, а затем исследованных в печени при различных экспериментальных условиях Рулье и Бернгардом. Эти микротельца, значительно менее многочисленные, чем митохондрии, окружены только одной хорошо выраженной мембраной и содержат тонкозернистое вещество, которое может конденсироваться в центре, образуя непрозрачную гомогенную сердцевину. Эти микротельца часто находят вблизи желчных канальцев. Их выделяли при помощи центрифугирования и отнесли к лизосомам. Рулье и Бернгард показали, что число микротелец значительно увеличивается в печени, регенирующей после гепатэктомии или отравления химическими веществами, которые разрушают печеночные клетки (четыреххлористый углерод), а также при кормлении, возобновленном после голодания. .Схематичное строение лизосомы Строение мембраны лизосом представляет собой комбинацию участков построенных по пластинчатому и мицеллярному типу. Мицеллы находятся в динамичном равновесие с пластинчатыми участками – это равновесие зависит от условий среды. Полярные группы фосфолипидов образуют поверхность мицеллы, а неполярные участки обращены внутрь. Пространство между молекулами липидов занято водой. Мицеллярные участки содержат длинные поры. Эти поры заполнены водой и могут закрываться полярными группами липидов. Подобная организация мембраны обеспечивает проницаемость не только для гидрофильных, но и для гидрофобных веществ. Химический состав: Неорганические соединения (Fe3+ , свинец, кадмий, кремний) Органические соединения (белки, полисахариды, некоторые олигосахариды – сахароза, фосфолипиды – фосфотидилхолин и фосфотидилсерин, жирные кислоты – ненасыщенные, что способствует высокой стабильности мембраны.) Образование лизосом По морфологии выделяют 4 типа лизосом: 1. Первичные лизосомы 2. Вторичные лизосомы 3. Аутофагосомы 4. Остаточные тельца Первичные лизосомы представляют собой мелкие мембранные пузырьки, заполненные бесструктурным веществом, содержащим набор гидролаз. Маркерным ферментом для лизосом является кислая фосфотаза. Первичные лизосомы настолько мелкие, что их очень трудно отличить от мелких вакуолей на периферии зоны аппарата Гольджи. Аутофагосомы встречаются в клетках простейших. Они относятся к вторичным лизосомам. Но в своем состояние содержат фрагменты цитоплазматических структур (остатки митохондрий, пластид, ЭПР, остатки рибосом, так же могут содержать гранулы гликогена). Процесс образования не ясен, но предполагают, что первичные лизосомы выстраиваются вокруг клеточной органеллы, сливаются друг с другом и отделяют органеллу от соседних участков цитоплазмы. Предполагают, что аутофагоцитоз связан с уничтожением сложных клеточных компонентов. В нормальных условиях число аутофагосом возрастает при метаболических стрессах. При различных повреждениях клеток аутофагоцитозу могут подвергаться целые зоны клеток. Лизосомы присутствуют в самых разных клетках. Некоторые специализированны клетки, например лейкоциты, содержат их в особенно большом количестве. Интересно, что отдельные виды растений, в клетках которых лизосомы не обнаружены, содержат гидролитические ферменты в клеточных вакуолях, которые поэтому могут выполнять ту же функцию, что и лизосомы. Функция лизосом, по-видимому, лежит в основе таких процессов, автолиз и некроз тканей, когда ферменты освобождаются из этих органелл в результате случайных или «запрограммированных» процессов. 18. Эндоплазматическая сеть, ее разновидности, роль в процессах синтеза веществ. Различают две разновидности ЭПС: гладкую (агранулярную) и шероховатую (гранулярную). Обе они образованы цистернами или каналами, которые ограничены мембраной, толщиной 6-7 нм. На наружной поверхности мембраны шероховатой ЭПС имеются рибонуклеопротеидные гранулы - рибосомы, отсутствующие на поверхности мембран гладкой сети. Оба типа ЭПС обычно находятся в непосредственной структурной взаимосвязи вследствие прямого перехода мембран ЭПС одного типа в мембраны ЭПС другого типа, а содержимое каналов и цистерн этих разновидностей ЭПС не разграничено специальными структурами. Тем не менее, обе разновидности ЭПС представляют собой дифференцированные специфические внутриклеточные органоиды, специализированные на реализацию разных функций. много общего с остальными клеточными мембранами. Функцию ЭПС гладкого типа связывают, главным образом, с углеводным и жировым обменом. Считают, что она участвует в синтезе липидов и расщеплении гликогена, предохраняя при этом образующуюся глюкозу от действия гликолитических ферментов. Наконец, все более очевидной становится значение гладкой эндоплазматической сети, как системы внутриклеточного проведения импульсов, в частности, в мышечных волокнах, где она лежит вдоль миофибрилл (белковые нити, способные к сокращению при раздражении). Гладкая ЭПС может транспортировать и накапливать вещества, осуществлять функцию детоксикации вредных продуктов обмена. В поперечно полосатой мышечной ткани гладкая ЭПС играет роль резервуара ионов кальция, а ее мембраны содержат мощные кальциевые насосы, которые в сотые доли секунды могут выбрасывать большие количества ионов в цитоплазму или, наоборот, транспортировать их в полость этих каналов. ЭПС в клетках надпочечников специализирована на синтез предшественников стероидных гормонов. Строение ЭПС гранулярного типа. Состоит из разветвленной системы канальцев или плоских мешочков, ограниченных липопротеидными мембранами, на поверхности которых расположены рибосомы. Она обнаружена почти во всех клетках, но наиболее сильно развита в клетках с высоким уровнем белкового обмена, например, в клетках эндокринной системы, поджелудочной железы, печени, слюнных желез, нейронах центральной нервной системы и т. д. Так, в секреторных клетках, синтезирующих белки на экспорт, гранулярная ЭПС занимает основную часть цитоплазмы. После гибели клеток гранулярная ЭПС разрушается значительно позже, чем агранулярная. Функцию ЭПС гранулярного типа, прежде всего, связывают с обеспечением синтеза белка, внутриклеточного транспорта и начальной пострансляционной модификацией белков, синтезируемых на прикрепленных рибосомах. Доказано, что на поверхности гранулярной ЭПС осуществляется синтез ряда простых веществ белковой природы. Синтезируемые вещества способны поступать в пространство ЭПС и передвигаться внутри клетки. Установлено, что мембраны ЭПС могут переходить в наружную мембрану ядерной оболочки. Вследствие этого пространство ЭПС может сообщаться с перинуклеарным пространством, расположенным между наружной и внутренней мембранами оболочки ядра. Иногда гранулярная ЭПС может играть роль резервуара для хранения запасных питательных веществ. Кроме того, важнейшей функцией мембраны ЭПС является ее способность ограничивать однородные участки цитоплазмы и вещества, в них содержащиеся. Такое явление называется компартментализацией цитоплазмы. Биогенез ЭПС. Этот вопрос представляет большой интерес, поскольку ЭПС является динамической структурой, претерпевающей значительные изменения в связи с функциональными колебаниями, свойственными клеткам. Так, например, при голодании организма, когда снижается синтез белков и интенсивно расходуется гликоген печени, в ее клетках уменьшается масса гранулярной сети и резко возрастает объем агранулярной сети. 19. Не мембранные органоиды. Рибосомы их структура и функций. Полисомы. В эту группу органоидов входят рибосомы, микротрубочки и микрофиламенты, клеточный центр. Рибосома Рибосомы присутствуют в клетках как эукариот, так и прокариот, поскольку выполняют важную функцию вбиосинтезе белков. В каждой клетке имеются десятки, сотни тысяч (до нескольких миллионов) этих мелких округлых органоидов. Это округлая рибонуклеопротеиновая частица. Диаметр ее составляет 20—30 нм. Состоит рибосома из большой и малой субъединиц, которые объединяются в присутствии нити м-РНК (матричной, или информационной, РНК). Комплекс из группы рибосом, объединенных одной молекулой м-РНК наподобие нитки бус, называетсяполисомой. Эти структуры либо свободно расположены в цитоплазме, либо прикреплены к мембранам гранулярной ЭПС (в обоих случаях на них активно протекает синтез белка). Полисомы гранулярной ЭПС образуют белки, выводимые из клетки и используемые для нужд всего организма (например, пищеварительные ферменты, белки женского грудного молока). Кроме этого, рибосомы присутствуют на внутренней поверхности мембран митохондрий, где также принимают активное участие в синтезе белковых молекул. К немембранным органоидам эукариотической клетки относятся органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе тубулиновых микротрубочек – клеточный центр и органоиды движения (жгутики и реснички). Полисома - (polysome), ПОЛИРИБОСОМА (polyribosome) - структура клеточной цитоплазмы, которая состоит из нескольких рибосом, соединенных с помощью молекул информационной (матричной) РНК. 20. Цитоскилет клетки, его строение и функций. Микроворсинки, реснички, жгутики. Цитоскелет выполняет три главные функции. 1. Служит клетке механическим каркасом, который придает клетке типическую форму и обеспечивает связь между мембраной и органеллами. Каркас представляет собой динамичную структуру, которая постоянно обновляется по мере изменения внешних условий и состояния клетки. 2. Действует как «мотор» для клеточного движения. Двигательные (сократительные) белки содержатся не только в мышечных клетках , но и в других тканях. Компоненты цитоскелета определяют направление и координируют движение, деление, изменение формы клеток в процессе роста, перемещение органелл, движение цитоплазмы. 3. Служит в качестве «рельсов» для транспорта органелл и других крупных комплексов внутри клетки. А. Микрофиламенты и промежуточные волокна В качестве примера функционирования компонентов цитоскелета на рисунке показан срез микроворсинок клетки кишечного эпителия. Микрофиламенты, построенные из F-актина, пронизывают микроворсинки, образуя узлы. Эти микроволокна удерживаются вместе с помощью актинсвязывающих белков, наиболее важными из которых являются фимбрин и виллин. Кальмодулин и миозиноподобная АТФ-аза соединяют крайние микроволокна с плазматической мембраной. Еще один актинсвязывающий белок, фодрин, соединяет волокна актина у основании, а также прикрепляет их к цитоплазматической мембране и к сетке, построенной из промежуточных волокон. В рассмотренном случае микрофиламенты актина выполняют главным образом статическую функцию. Однако чаще всего актин принимает участие в динамических процессах, таких, как мышечное сокращение движение клетки, фагоцитоз, образование микровыпячиваний и ламеллиподий (клеточных расширений), а также акросом в процессе слияния сперматозоида с яйцеклеткой. Реснички и жгутики представляют собой выросты цитоплазмы, в которьрс находится осевая нить, или аксонема. Последняя представляет собой каркас из микротрубочек, Длина ресничек может составлять 2-10 нм, а их количество на поверхности одной клетки достигает нескольких сотен. Длина жгутика изменяется в широких пределах (спермин человека несут один жгутик длиной 50-70 мкм). Аксонема образована 9 периферийными парами микротрубочек и одной парой, расположенной в центре образующегося цилиндра. В каждой периферийной паре из-за частичного слияния микротрубочек одна микротрубочка полная, а вторая неполная, т.к. имеет 2-3 общих димера с первой микротрубочкой. Центральная пара микротрубочек окружена центральной оболочкой. 21. Ядро. Как правило, эукариотическая клетка имеет одно ядро, но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высокоспециализированные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных). Форма ядра — сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра — обычно от 3 до 10 мкм. Строение ядра: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — поры; 4 — ядрышко; 5 — гетерохроматин; 6 — эухроматин. Ядро отграничено от цитоплазмы двумя мембранами (каждая из них имеет типичное строение). Между мембранами — узкая щель, заполненная полужидким веществом. В некоторых местах мембраны сливаются друг с другом, образуя поры (3), через которые происходит обмен веществ между ядром и цитоплазмой. Наружная ядерная (1) мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя (2) мембрана гладкая. Ядерные мембраны являются частью мембранной системы клетки: выросты наружной ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов. Эухроматин — генетически активные, гетерохроматин — генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотненные) участки хроматина. Хроматин — форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы. Функции ядра: 1) хранение наследственной информации и передача ее дочерним клеткам в процессе деления, 2) регуляция жизнедеятельности клетки путем регуляции синтеза различных белков, 3) место образования субъединиц рибосом. 22. Ядрышко. Его строение и функций. Ядрышковый организатор. Ядрышко- хромосомные участки, определяющие синтез рРНК и образование клеточных рибосом. В растущих ооцитах неск сот ядрышек - амплификация ядрышек. Ядрышки отсутствуют в клетках дробящихся яиц и в дифф. кл - клетки крови Число ядрышек зависит от числа ядрышковых организаторов - участки, на кот в телофазе происх образование ядрышек интерфазного ядра - образуют вторичные перетяжки х-м. У человека яо расп в коротких плечах 13, 14, 15, 21 и 22 хромосом (10 на диплоидный набор). 82). У кошки - 2; у свиньи - 2; у мыши - 4; у коровы - 8. У хладнокр. позвоночных и птиц обычно 1пара яо х-м Амплифицированные ядрышки встречаются также в ооцитах насекомых. У окаймленного плавунца в ооцитах обнаружено 3х106 экстрахромосомных копий генов рРНК. После периода созревания ооцита при его двух последовательных делениях дополнит ядрышки в состав митотических хромосом не входят, они отделяются от новых ядер и деградируют. У дрожжей экстрахромосомные копии генов рРНК - циклические ДНК l |