Главная страница

1. Экология как наука. Положение экологии в системе наук о природе


Скачать 1.32 Mb.
Название1. Экология как наука. Положение экологии в системе наук о природе
АнкорVoprosy_1-74_Ekzamen_ekologia.docx
Дата02.12.2017
Размер1.32 Mb.
Формат файлаdocx
Имя файлаVoprosy_1-74_Ekzamen_ekologia.docx
ТипДокументы
#10603
страница8 из 9
1   2   3   4   5   6   7   8   9

  • пространственный континуум — постепенное изменение состава и свойств растительного покрова в пространстве

  • горизонтальный континуум — плавный переход одних сообществ в другие при изменении условий среды

  • вертикальный континуум — постепенный переход одних ярусов фитоценоза в другие

  • временной континуум — постепенное изменение состава и свойств растительного покрова во времени (при сезонных и многолетних колебаниях, сукцессии и эволюции растительности)

  • синтаксономический континуум — отражает наличие переходных (промежуточных) сообществ между их типами (синтаксонами).

Непрерывность растительного покрова является универсальным явлением, хотя степень непрерывности может быть самой разной. Она возрастает в сообществах с наличием нескольких сильных эдификаторов (например, леса умеренного пояса) и уменьшается в сообществах с множеством слабых эдификаторов (например, луга, рудеральная растительность, степи).

Нейтральная теория (neutral theory). Основные идеи изложены Стивеном Хаблом[en] в работе The Unified Neutral Theory of Biodiversity and Biogeography и представляют собой адаптацию идей нейтральной теории молекулярной эволюции Мотоо Кимуры применительно к экологии:

Нейтральная теория молекулярной эволюции — теория, утверждающая, что подавляющее число мутаций на молекулярном уровне носит нейтральный по отношению к естественному отбору характер. Как следствие, значительная часть внутривидовой изменчивости (особенно в малых популяциях) объясняется не действием отбора, а случайным дрейфом мутантных аллелей, которые нейтральны или почти нейтральны.

Теория была разработана Мото Кимурой в конце 1960-х годов. Теория нейтральной эволюции хорошо согласуется с фактом постоянной скорости закрепления мутаций на молекулярном уровне, что позволяет, к примеру, оценивать время расхождения видов.

Теория нейтральной эволюции не оспаривает решающей роли естественного отбора в развитии жизни на Земле. Дискуссия ведётся касательно доли мутаций, имеющих приспособительное значение. Большинство биологов признаёт ряд результатов теории нейтральной эволюции, хотя и не разделяет некоторые сильные утверждения, первоначально высказанные М. Кимурой.

Теория метапопуляций (metapopulation). Возникла на основе идей метапопуляциях («пространственных пятнах популяции») в ландшафтной экологии и связанных с ними эффектах:

Метапопуляция – группа пространственно разобщенных, но взаимодействующих популяций одного вида.

Метапопуляция – длительно существующая совокупность субпопуляций, каждая из которых может существовать лишь недолгое время.Характерна для многих видов, заселяющих фрагментированную среду.

Ареал – обширная территория, на которой существует вид, а местообитание – конкретный локалитет (локалитеты), в пределах ареала.

Ниша – положение (статус) вида в экосистеме, пространственное и функциональное место, которое может быть занято или занимается конкретным видом в конкретном сообществе

Связность – показатель потока мигрирующих особей (ожидаемый уровень иммиграции).

Емкость метапопуляции – показатель связности на уровне ландшафта.

Целостность местообитаний – показатель связности местообитаний во времени.

Фрактальная теория (fractal). Идеи об определении отношения типа виды-площадь (SAR) на основе фрактальных закономерностей:

Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком.

Агрегированное пуассоновское распределение (clustered poisson). Описание пространственной структуры сообщества на основе точечного процесса, когда по площади распределяются „материнские“ точки, вокруг которых неким образом распределяются „дочерние“ точки:

Распределение Пуассона — вероятностное распределение дискретного типа, моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.

Максимизация энтропии (MaxEnt). Отражение давней тенденции проникновения в биологию методов теории информации, а также общесистемных формальных теорий.

В первом приближении биологическое разнообразие видов характеризуется двумя признаками — видовым богатством и выровненностью.

Видовое богатство отражает число видов, встречающихся в пределах экосистемы, в то время как выровненность характеризует равномерность распределения численности животных[12]. Выделение этих составляющих связано с тем, что за редким исключением в экосистемах среди организмов, принадлежащих к одному трофическому уровню, экологической или таксономической группе, большая часть биомассы достигается за счёт вклада очень немногих видов.

Для количественной оценки инвентаризационного разнообразия используются меры разнообразия или двойственные им меры концентрации. Подразумевается, что наиболее разнообразное сообщество является «стратегическим запасом» биологической эволюции, а, следовательно, количественное определение таких сообществ позволяет обеспечить им охранный статус. Близким понятием является понятие выравненности (evenness или equitability) видового состава сообщества.

Другим направлением количественной оценки является определение доли редких и обильных видов, а также их влияния на структуру сообществ в целом. Близким направлением является оценка доминирования видов, в рамках концепции которой используется понятие значимости вида. Под значимостью может пониматься оценка его места в экосистеме — биомасса, численность и др.

Ещё одним (очень популярным и значимым) направлением в этой области является предсказание числа необнаруженных (unseen) видов сообщества. Для этих целей используют: простые статистические экстраполяции на основе методов анализа временных рядов, кривые зависимости типа «виды-площадь», построение моделей на основе фрактальных закономерностей и проч.

Для оценки дифференцирующего разнообразия используются меры сходства. По сути оценка этого типа разнообразия происходит через сравнение и выявление сходных элементов биосистем.

Исчезновение биологических видов является нормальным процессом развития жизни на Земле. В процессе эволюции неоднократно происходило массовое вымирание видов. Примером может служить пермское вымирание, приведшее к исчезновению всех трилобитов.

Массовое пермское вымирание (неформально именуемое как англ. The Great Dying — великое вымирание, или как англ. The Greatest Mass Extinction of All Time — величайшее массовое вымирание всех времён) — одно из пяти массовых вымираний. По нему проведена граница между пермским и триасовым геологическими периодами (она же разделяет палеозойскую и мезозойскую эры). Возраст этой границы по современной (2012 года) геохронологической шкале — 252,2 ± 0,5 млн лет.

Является одной из крупнейших катастроф биосферы в истории Земли, привела к вымиранию 96 %[4] всех морских видов и 70 % наземных видов позвоночных. Катастрофа стала единственным известным массовым вымиранием насекомых, в результате которого вымерло около 57 % родов и 83 % видов всего класса насекомых. Ввиду утраты такого количества и разнообразия биологических видов восстановление биосферы заняло намного более длительный период времени по сравнению с другими катастрофами, приводящими к вымираниям. Модели, по которым протекало вымирание, находятся в процессе обсуждения. Различные научные школы предполагают от одного до трёх толчков вымирания.

В настоящее время у специалистов отсутствует общепринятое мнение о причинах вымирания. Рассматривается ряд возможных причин:

  • катастрофические события:

  • усиление вулканической деятельности в Сибири;

  • падение одного или многих метеоритов, либо столкновение Земли с астероидом диаметром в несколько десятков километров (одним из доказательств этой гипотезы служит возможное наличие 500-километрового кратера в районе Земли Уилкса);

  • внезапный выброс метана со дна моря.

  • постепенные изменения окружающей среды:

  • аноксия — изменения химического состава морской воды и атмосферы, в частности, дефицит кислорода;

  • повышение сухости климата;

  • изменение океанических течений и/или уровня моря под влиянием изменений климата;

В результате массового вымирания с лица Земли исчезло множество видов, ушли в прошлое целые отряды и даже классы; большая часть отряда парарептилий (кроме предков современных черепах), многие виды рыб и членистоногих (в том числе знаменитые трилобиты). Катаклизм также сильно ударил по миру микроорганизмов.

Считается, что на восстановление биосферы после массового вымирания ушло около 30 млн лет, однако некоторые ученые делают выводы, что оно могло произойти и за более короткий промежуток времени, около 5-10 млн лет. Вымирание старых форм открыло дорогу многим животным, долгое время остававшимся в тени: начало и середина следующего за пермью, триасового периода ознаменовалось становлением архозавров, от которых произошли динозавры и крокодилы, а впоследствии птицы. Кроме того, именно в триасе появляются первые млекопитающие.

Начиная с XVII века основным фактором ускорения вымирания стала хозяйственная деятельность человека. В общем плане причинами снижения разнообразия служат растущее потребление ресурсов, пренебрежительное отношение к видам и экосистемам, недостаточно продуманная государственная политика в области эксплуатации природных ресурсов, непонимание значимости биологического разнообразия и рост численности населения Земли.

Кра́сная кни́га — аннотированный список редких и находящихся под угрозой исчезновения животных, растений и грибов. Красные книги бывают различного уровня — международные, национальные и региональные.

Первая организационная задача охраны редких и находящихся под угрозой исчезновения видов — их инвентаризация и учёт, как в глобальном масштабе, так и в отдельных странах. Без этого нельзя приступать ни к теоретической разработке проблемы, ни к практическим рекомендациям по спасению отдельных видов. Задача не простая, и ещё 30—35 лет назад предпринимались первые попытки составить сначала региональные, а затем мировые сводки редких и исчезающих видов зверей и птиц. Однако сведения были или слишком лаконичны и содержали лишь перечень редких видов, или, напротив, очень громоздки, поскольку включали все имеющиеся данные по биологии и излагали историческую картину сокращения их ареалов.

Особо охраняемые природные территории (ООПТ) — участки земли, водной поверхности и воздушного пространства над ними, где располагаются природные комплексы и объекты, которые имеют особое природоохранное, научное, культурное, эстетическое, рекреационное и оздоровительное значение, которые изъяты решениями органов государственной власти полностью или частично из хозяйственного использования и для которых установлен режим особой охраны.

70.Экологический мониторинг.

Экологический мониторинг (мониторинг окружающей среды) — это комплексная система наблюдений за состоянием окружающей среды, оценки и прогноза изменений состояния окружающей среды под воздействием природных и антропогенных факторов.

Различаются такие подсистемы экологического мониторинга, как: геофизический мониторинг (анализ данных по загрязнению, мутности атмосферы, исследует метеорологические и гидрологические данные среды, а также изучает элементы неживой составляющей биосферы, в том числе и объектов, созданных человеком); климатический мониторинг(служба контроля и прогноза колебаний климатической системы. Охватывает ту часть биосферы, которая влияет на формирование климата: атмосферу, океан, ледяной покров и др. Климатический мониторинг тесно смыкается с гидрометеорологическими наблюдениями.); биологический мониторинг (основанный на наблюдении за реакцией живых организмов на загрязнение окружающей среды); мониторинг здоровья населения (система мероприятий по наблюдению, анализу, оценке и прогнозу состояния физического здоровья населения) и др.

В общем виде процесс экологического мониторинга можно представить схемой: окружающая среда (либо конкретный объект окружающей среды) -> измерение параметров различными подсистемами мониторинга -> сбор и передача информации -> обработка и представление данных (формирование обобщенных оценок), прогнозирование. Система экологического мониторинга предназначена для обслуживания систем управления качеством окружающей среды (далее «система управления»). Информация о состоянии окружающей среды, полученная в системе экологического мониторинга, используется системой управления для предотвращения или устранения негативной экологической ситуации, для оценки неблагоприятных последствий изменения состояния окружающей среды, а также для разработки прогнозов социально-экономического развития, разработки программ в области экологического развития и охраны окружающей среды.

В системе управления можно также выделить три подсистемы: принятие решения (специально уполномоченный государственный орган), управление выполнением решения (например, администрация предприятий), выполнение решения с помощью различных технических или иных средств.

Подсистемы экологического мониторинга различаются по объектам наблюдения. Поскольку компонентами окружающей среды являются воздух, вода, минерально-сырьевые и энергетические ресурсы, биоресурсы, почвы и др., то выделяют соответствующие им подсистемы мониторинга. Однако, подсистемы мониторинга не имеют единой системы показателей, единого районирования территорий, единства в периодичности отслеживая и др., что делает невозможным принятие адекватных мер при управлении развитием и экологическим состоянием территорий. Поэтому при принятии решений важно ориентироваться не только на данные «частных систем» мониторинга(гидрометеослужбы, мониторинга ресурсов, социально-гигиенического, биоты и др.), а создавать на их основе комплексные системы экологического мониторинга.

Научно обоснованный мониторинг окружающей среды осуществляется в соответствии с Программой. Программа должна включать в себя общие цели организации, конкретные стратегии его проведения и механизмы реализации.

Ключевыми элементами Программ мониторинга окружающей среды являются[2]:

  • перечень объектов, находящихся под контролем с их строгой территориальной привязкой (хорологическая организация мониторинга);

  • перечень показателей контроля и допустимых областей их изменения (параметрическая организация мониторинга);

  • временные масштабы – периодичность отбора проб, частота и время представления данных (хронологическая организация мониторинга).

Кроме того, в приложении в Программе мониторинга должны присутствовать схемы, карты, таблицы с указанием места, даты и метода отбора проб и представления данных.

Интерпретации данных экологических мониторинга, даже полученных от хорошо продуманной программы, является часто неоднозначной. Часто имеются результаты анализа или «предвзятых результатов» мониторинга, или достаточно спорное использование статистики, чтобы продемонстрировать правильность той или иной точки зрения. Это хорошо видно, например, в трактовке глобального потепления, где сторонники утверждают, что СО 2 уровни увеличились на 25% за последние сто лет в то время как противники утверждают, что уровень CO 2 только поднялся на один процент.

В новых научно-обоснованных программах мониторинга окружающей среды разработан ряд показателей качества, чтобы интегрировать значительные объемы обрабатываемых данных, классифицировать их и интерпретировать смысл интегральных оценок. Так, например, в Великобритании используется система GQA. Эти общие оценки качества классифицируют реки на шесть групп по химическим критериям и биологическим критериям.

Для принятия решений пользоваться оценкой в системе GQA более удобно, чем множеством частных показателей.

71-73. Специфика действия антропогенных факторов на организмы. Окружающая человека среда и её компоненты./ Экологические кризисы и экологические ситуации./ Современный экологический кризис и его особенности. Масштабы воздействия человека на биосферу.

Важнейшие особенности антропогенных факторов следующие:

1) нерегулярность действия и в связи с этим непредсказуемость для организмов, а также высокая интенсивность изменений, несоизмеримая с адаптационными возможностями организмов;

2) любые действия на организмы, вплоть до полного из уничтожения, что свойственно природным факторам и процессам лишь в редких случаях (стихийные бедствия, катаклизмы). Воздействия человека могут быть как целенаправленными, типа конкурентной борьбы с организмами, именуемыми вредителями и сорняками, так и непреднамеренными, типа промысла, загрязнений, разрушения местообитаний и т. п.;

3) являясь результатом деятельности живых организмов (человека), антропогенные факторы действуют не как биотические (регулирующие), а как специфические (модифицирующие). Эта специфика проявляется либо через изменение природной среды в направлении неблагоприятном для организмов (температура, влага, свет, климат и т. п.), либо посредством привнесения в среду чуждых организмам агентов, объединяемых термином «ксенобиотики»;

4) ни один вид не совершает никаких действий во вред самому себе. Эта особенность присуща только человеку, наделенному разумом. Именно человеку приходится в полной мере получать отрицательные результаты от загрязняемой и разрушаемой среды. Биологические виды одновременно изменяют и кондиционируют среду; человек, как правило, изменяет среду в неблагоприятном для себя и других существ направлении;

5) человек создал группу социальных факторов, которые являются средой для самого человека. Действие этих факторов на человека, как правило, не менее значительно, чем природных.

Интегральным проявлением действия антропогенных факторов является специфическая среда, созданная влиянием этих факторов.

Окружающая человека среда и ее компоненты
1   2   3   4   5   6   7   8   9


написать администратору сайта