Главная страница
Навигация по странице:

  • Оценка мешающего действия пульсации напряжения

  • 16. Сглаживающие фильтры из индуктивности и емкости .

  • Расчет элементов фильтра из одного дросселя

  • Расчет коэффициента фильтрации однозвенного фильтра

  • Расчет элементов однозвенного фильтра

  • 17. Сглаживающие фильтры с аккумуляторной батареей

  • В двухпроводной схеме подключения аккумуляторной батареи

  • В четырехпроводной схеме подключения аккумуляторной батареи

  • В упрощенной двухпроводной схеме подключения аккумуляторной батареи

  • 18. Транзисторные сглаживающие фильтры Транзисторные сглаживающие фильтры

  • Экзамен эпу. экзамен эпу. 1 Гальванические элементы. Классификация. Назначение. Основные характеристики. Принцип работы


    Скачать 3.47 Mb.
    Название1 Гальванические элементы. Классификация. Назначение. Основные характеристики. Принцип работы
    АнкорЭкзамен эпу
    Дата12.10.2022
    Размер3.47 Mb.
    Формат файлаdocx
    Имя файлаэкзамен эпу.docx
    ТипДокументы
    #729564
    страница4 из 9
    1   2   3   4   5   6   7   8   9

    15.Сглаживающие фильтры. Назначение. Классификация. Основные параметры.

    На выходе любой схемы выпрямления имеет место пульсация напряжения. Амплитуда и характер пульсации зависят от схемы выпрямления, характера нагрузки, формы входного переменного напряжения и других факторов. Напряжение пульсации создает помехи в питаемой аппаратуре и может нарушить нормальный режим ее работы. Для снижения амплитуды пульсации до до­пустимого значения выпрямительные устройства снабжают фильтрами. Если считать, что выпрямитель нагружен на чисто активную нагрузку и входное напряжение синусоидально, то вы­прямленное напряжение может быть представлено в виде сле­дующего ряда Фурье



    где Um - максимальное значение выпрямленного напряжения;

    m - число фаз выпрямления

    f - частота входного напряжения.

    Слагаемое перед скобками- постоянная составляющая сиганала, а члены ряда характеризуют гармонику. С ростом номера гармоники напряжение уменьшается.

    Оценка мешающего действия пульсации напряжения

    Если в выпрямленном напряжении имеются гармоники с часто­тами f1, f2, …fn. амплитудные напряжения которых соответственно U1, U2, … Un, то полное эффективное напряжение помех определяется как среднее квадратичное из выражения



    Напряжение помех с учетом чувствительности органов слуха человека к колебаниям различных частот называют псофометрическим напряжением. Полное эффективное псофометрическое на­пряжение помех, содержащих ряд гармоник,



    где ах, а2,.. . , аn - псофометрические коэффициенты для соответствующих гармоник.

    Полное эффективное (среднее квадратичное) напряжение пуль­сации измеряется вольтметром с квадратичной характеристикой детектирования и частотным диапазоном от 20 до 20000 Гц.

    Амплитуда пульсации напряжения на выходе схемы выпрямле­ния в большинстве случаев превышает допустимое значение. Для снижения амплитуды пульсации применяют сглаживающие фильтры.



    Рисунок 4.1 – Сглаживающие фильтры

    Схемы и конструкция фильтров могут быть самыми разнооб­разными. Простейшие фильтры (рисунок 4.1, а и б) обычно состоят из одного элемента (индуктивности или емкости). Одно- и многозвен­ные фильтры (рисунок 4.1, в, г и д) состоят из различных комбинаций L, Си R.. В резонансных фильтрах (рисунок 4.1, е и ж) имеются резо­нансные контуры, настроенные на одну из гармоник (обычно первую) выпрямленного напряжения. Электронные фильтры (рисунок 4.1, з), в которых в качестве управляемого сопротивления, подавляющего переменную составляющую, используются схемы с транзисторами. В фильтрах с аккумуляторной батареей (рисунок 4.1, и) аккумуляторная батарея, кроме основного своего назначения - резервирования питания, выполняет вторую задачу - обеспечивает уменьшение пульсации. Для питания стационарной аппаратуры автоматики и связи на железнодорожном транспорте наиболее широкое распространение получили схемы фильтров (см. рисунок 4.1, а, г, д и и).

    Основным параметром сглаживающих фильтров является коэф­фициент фильтрации, который показывает, во сколько раз фильтр уменьшает амплитуду напряжения соответствующей гармоники ,где Unвх и Unвых- амплитудные значения напряже­ния n-й гармоники соответственно на входе и выходе фильтра.

    16. Сглаживающие фильтры из индуктивности и емкости.

    Фильтр, состоящий из одного дросселя обычно применяется для неизменной нагрузки ( на большой ток и малое напряжение), так как его коэффициент фильтрации в значительной степени зависит от тока нагрузки. Если коэффициент фильтрации должен быть большим, то фильтр индуктивный применять нецелесообразно, так как в это случае он получается дорогой и громоздкий.

    Расчет элементов фильтра из одного дросселя (см. рисунок 4.2, а). Применительно к этой схеме можно записать два равенства для n-й гармоники

    и ,

    где in - переменный ток, возникающий в цепи под влиянием гармоники

    с напряжением Un;

    r -активное сопротивление дросселя;

    ωn - угловая частота n-й гармоники;

    RH - сопротивление нагрузки;

    L - индуктивность дросселя.

    Коэффициент фильтрации будет определяться соотношением

    (4.4)

    Обычно активное сопротивление дросселя г и активное сопро­тивление Rн много меньше индуктивного, поэтому ими можно пренебречь. При этих условиях равенство (4.4) принимает вид (4.5). Индуктивность дросселя на основании (4.5) . Фильтр, состоящий из одного дросселя, обычно применяется при неизменной нагрузке, гак как его коэф­фициент фильтрации в значительной степени зависит от тока нагрузки. Когда kn должен быть большим, фильтр из одного дросселя не применяют, так как в этом случае дроссель получается громоздким и дорогим.


    Рисунок 4.2 – Сглаживающий фильтр, состоящий из одного дросселя L (а), и однозвенный фильтр (б)

    Расчет коэффициента фильтрации однозвенного фильтра (рисунок. 4.2, б). Необходимый коэффициент фильтрации, отнесенный к первой гармонике, при котором обеспечивается снижение суммарной пуль­сации допустимого значения.


    Расчет элементов однозвенного фильтра (см. рисунок 4.2, б). Данный фильтр тем лучше сглаживает пульсацию, чем больше индуктив­ность дросселя и емкость конденсатора. Сопротивление конденса­тора С для переменного тока должно быть гораздо меньше, чем сопротивление нагрузки. Поэтому при расчетах фильтра можно сопротивление Rн не учитывать. Тогда применительно к данной схеме будут справедливы следующие два равенства для n-й гармо­ники:

    ; ,

    где - индуктивное сопротивление дросселя;

    - емкостное сопротивление конденсатора.

    Коэффициент фильтрации для данной схемы



    Сопротивлением г2 можно пренебречь. Тогда

    .

    Из этого выражения

    .

    Затем по рабочему напряжению и емкости выбирают конденса­торы, после чего определяют требуемую индуктивность дросселя. В Г-образном фильтре на дроссель приходится наибольшее падение напряжения переменной составляющей выпрямленного напряже­ния, так как только в этом случае на конденсаторе и нагрузке, присоединенной параллельно к нему, напряжение пульсации будет мало. В связи с этим должно выполняться неравенство xL<< xC, тогда Г-образный фильтр будет иметь индуктивную реакцию. Для предотвращения резонансных явлений в фильтре необходимо, чтобы собственная частота фильтра была бы меньше частоты переменной составляющей выпрямленного напряжения. Опыт пока­зывает, что собственная частота фильтра, определяемая из соотно­шения , должна быть по крайней мере в 2 раза меньше частоты гармоники, на которую рассчитывается фильтр.

    17. Сглаживающие фильтры с аккумуляторной батареей.

    Аккумуляторная батарея, применяемая в буферных электропитающих установках, используется как резервный источник тока. Одновременно совместно с элементами фильтра она обеспечивает сглаживание выпрямленного тока. Переменная и постоянная составляющие выпрямленного тока проходят по двумя путям - че­рез батарею и через нагрузку (рисунок 4.3).

    Каждая из этих цепей имеет различное сопротивление для переменного и постоянного токов. Постоянная составляющая выпрямленного тока в основном протекает через нагрузку и только небольшая часть (в режиме непрерывного подзаряда) ответвляется через батарею. Это происходит потому, что батарея аккумуляторов включена таким образом, что ее э. д. с. направлена навстречу э. д. с. выпрямителя и препятствует прохождению постоянного тока. Переменная составляющая выпрямленного тока ответвляется через аккумуляторную батарею и только незначительная часть - через нагрузку.

    Для эффективного сглаживания пульсации при буферной систе­ме электропитания необходимо, чтобы сопротивление цепи батареи для переменной составляющей выпрямленного тока было гораздо меньше, чем сопротивление нагрузки. Сопротивление существенно зависит от способа подключения аккумуляторной батареи. Сущест­вует несколько способов подключения батареи.

    В двухпроводной схеме подключения аккумуляторной батареи (рисунок 4.4, а) сопротивление цепи батареи (между точками а и б)



    где Rпр- сопротивление элементов защиты;

    Rп- сопротивление элементов коммутации;

    Rш1и Rт2 - сопротивление соединительных шин;

    R6 - сопротивление аккумуляторной батареи.

    В некоторых случаях, особенно для электропитающих установок, рассчитанных на низкие напряжения и большие токи, может оказаться, что сумма сопротивлений, включенных в цепь батареи, значительно превосходит ее собственное сопротивление, что резко снижает фильтрующее свойство батареи.



    Рисунок 4.3 – Схема распределения постоянной и переменной составляющих выпрямленного тока на выходе выпрямителя

    Рисунок 4.4 – Схемы подключения аккумуляторной батареи к выпрямителю и нагрузке:

    а – двухпроводная; б – четырехпроходная; в- упрощенная двухпроводная

    В четырехпроводной схеме подключения аккумуляторной батареи (рисунок 4.4, б) все дополнительные элементы исключены из цепи батареи и перенесены в главную цепь питания. Сопротивление цепи батареи для этой схемы Rцб = R6. Схема обеспечивает эффективное сглаживание, но мало экономична, так как в аккумуляторную необходимо проложить две пары шин.

    В упрощенной двухпроводной схеме подключения аккумуляторной батареи (рисунок 4.4, в) часть элементов, повышающих сопротивление цепи батареи, перенесена в главную цепь питания. Сопротивление цепи батареи для этой схемы . Если в этой схеме шины выбрать с такой площадью поперечного сечения, что сопротивление их не будет превышать 10% от сопротивления батареи, то схема по своим качествам будет мало отличаться от четырехпроводной. Схема имеет широкое распространение.

    18. Транзисторные сглаживающие фильтры

    Транзисторные сглаживающие фильтры могут быть построены по примеру LC-фильтров так, что транзистор заменяет дроссель или конденсатор фильтра. Практически транзисторные сглажи­вающие фильтры целесообразно применять лишь с последователь­ным включением транзистора, заменяя при этом дроссель. В та­ком случае транзисторный сглаживающий фильтр может быть рассчитан на большие токи нагрузки и сравнительно низкие на­пряжения.

    Рисунок 4.5 - Схема П-образного транзисторного сглаживающего фильтра (а), выходные характеристики транзистора (б) и эквивалентная схема фильтра (в)

    Транзистором называют полупроводниковый, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор.

    На рисунке 4.5 показана схема П-образного сглаживающего фильтра, в котором действие транзистора эквивалентно действию дросселя. Подобно дросселю транзистор обладает сравнительно большим сопротивлением переменному току и небольшим сопротивлением постоянному току. Эти сопротивления определяются в виде: и ,

    где IK, UКЭ и соответствующие приращения этих величин показаны на рисунке 4.5 а, б.

    О величинах сопротивлений Rп и R0 можно судить по следующе­му примеру. По выходным характеристикам транзистора (рисунок 4.5б) для рабочей точки А имеем: Iк—200 мА, UКЭ=16 В, ΔUКЭ= 12 В, Rп=Rк=3000 Ом, Rо=80 Jм.

    В простейших схемах транзисторных фильтров для поддержа­ния постоянства тока Iэ используется цепочка R1C2(рисунок 4.5 а) с большой постоянной времени. В результате ток за время одного периода пульсации практически не меняется и в схеме создается необходимое напряжение между эмиттером и базой транзистора. При отсутствии R1C2 цепочки пришлось бы включать отдельную батарею. Таким образом, цепочки R1C2играют в схеме фильтра вспомогательную роль, Сф1 — является емкостным филь­тром, а действие Г-образной части схемы рисунка 4.5, а сводится к тому, что часть переменной составляющей входного напряжения на фильтре усиливается транзистором (усиливается лишь та часть напряжения, которая непосредственно приложена ко входу тран­зистора), причем усиленное напряжение сдвинуто по фазе отно­сительно входного напряжения на 180°. В результате этого осу­ществляется частичная компенсация переменной составляющей и пульсация напряжения на нагрузке уменьшается.

    Характеристики:

    - реактивное сопротивление конденсатора C2.
    Как видно из схемы, сопротивление фильтра постоянному току

    ,

    При этом падение напряжения постоянного тока на фильтре

    .

    Емкость конденсатора , так как требуется большая постоянная времени R1C2которую целесообразнее создавать за счет большой емкости С2. Здесь fп — наиболее низкая частота пульсации. Конденсатор С2должен быть рассчитан на рабочее на­пряжение , где U0— постоянное напряжение на на­грузке.

    Сопротивление

    ,

    где αi — статический коэффициент усиления транзистора по тюку; IК0 — ток коллектора при IЭ=0; RH— сопротивление нагрузки; U0 — напряжение на нагрузке.

    Коэффициент сглаживания П-образного фильтра (т. е. включая конденсаторы Сф1 и Сф2) по схеме рисунка 4.6, а можно определить в виде

    ,


    Рисунок 4.6 - Схемы Г-образных транзисторных сглаживающих фильтров: а —с выходной емкостью Сф2, б—бет внешней выходной емкости
    Примером простейшей схемы транзисторного сглаживающего фильтра с автоматическим смещением служит схема, показанная на рисунке 4.6, а. Здесь показана Г-образная часть фильтра, причем транзистор действует как дроссель. Максимальный коэффициент сглаживания такого фильтра может быть определен на основания его эквивалентной схемы, подобной схеме рисунке 4.5в. После соответствующего упрощения можно найти

    .

    Получаемые при этом коэффициенты сглаживания подобных филь­тров намного меньше, чем фильтров с фиксированным смещением. Этим можно объяснить, что фильтры по схеме рисунка 4.6, а применяются редко.

    На рисунке 4.6б показана схема транзисторного сглаживающего фильтра, у которого нагрузка включена в цепь эмиттера, т.е. схе­ма в целом представляет эмиттерный повторитель. В этой схеме отсутствует конденсатор Сф2.

    Не исключена возможность подключения конденсатора Сф2 большой емкости на выходе фильтра, как показано пунктиром на рисунке 4.6,б. Однако это целесообразно лишь в том случае, если Сф2=2—3 тыс. мкФ. В противном случае действие Сф2 не эффек­тивно.

    В транзисторных сглаживающих фильтрах целесообразно при­менять составные транзисторы вследствие того, что коэффициенты усиления таких транзисторов резко увеличиваются по сравнению с одиночными транзисторами. Например, для двойного составно­го транзистора ,а для тройного — .С другой сто­роны, увеличение значения β приводит к лучшему сглаживанию пульсаций и уменьшению выходного сопротивления фильтра.

    В качестве примера на рисунке 4.7 приведены две схемы фильт­ров с составными транзисторами. Их особенности и методика ра­счета иллюстрируются примером расчета.



    Рисунок 4.7 - Схемы сглаживающих фильтров с составными транзисторами
    Применение многозвенных транзисторных фильтров практиче­ски отпадает по ряду причин, в том числе и вследствие резкого уменьшения кпд., усложнения схем, снижения надежности дейст­вия и т. п.
    1   2   3   4   5   6   7   8   9


    написать администратору сайта