Главная страница
Навигация по странице:

  • 36 Принцип построения универсального бесперебойного устройства электропитания в электросвязи

  • Экзамен эпу. экзамен эпу. 1 Гальванические элементы. Классификация. Назначение. Основные характеристики. Принцип работы


    Скачать 3.47 Mb.
    Название1 Гальванические элементы. Классификация. Назначение. Основные характеристики. Принцип работы
    АнкорЭкзамен эпу
    Дата12.10.2022
    Размер3.47 Mb.
    Формат файлаdocx
    Имя файлаэкзамен эпу.docx
    ТипДокументы
    #729564
    страница8 из 9
    1   2   3   4   5   6   7   8   9

    34. Преобразователи постоянного напряжения (конверторы).

    Преобразователи постоянного напряжения (конверторы) поз­воляют получать на основе постоянного тока одного напряжение Uо1 постоянный ток другого напряжения Uо2(рисунок 6.8). Если на­пряжение переменного тока преобразуется просто - трансформато­рами, то преобразование напряжения постоянного тока связано с рядом технических трудностей. Сначала необходимо преобразовать постоянный ток в переменный, затем трансформировать его, увели­чивая или уменьшая до необходимого значения, а затем опять преобразовывать в постоянный ток.

    Основными элементами конвертора являются: инвертор И, со­стоящий из задающего генератора ЗГ и усилителя мощности У; выпрямитель В и фильтр Ф. Все элементы конвертора взаимосвяза­ны. Характер реактивности нагрузки и схема сглаживающего филь­тра определяют режим работы выпрямителей. Процессы, проте­кающие в выпрямителе, во многом определяются режимом работы и схемой инвертора.



    Рисунок 6.8 – Структурная схема конвертора

    В качестве инвертора может быть использована любая схема из рассмотренных ранее. На выходе инвертора форма кривой напряже­ния должна быть как можно ближе к прямоугольной, что сущест­венно уменьшает амплитуду пульсации выпрямленного напряжения и упрощает конструкцию фильтра. Это требование лучше обеспечивают двухтактные схемы инверторов. Частота колебаний, выраба­тываемых инвертором, может лежать в диапазоне от сотен герц до нескольких килогерц. С увеличением частоты уменьшаются габа­ритные размеры, а также масса трансформаторов и дросселей. Но при частотах переключения больше нескольких килогерц индуктив­ность рассеяния, межвитковая емкость и емкость монтажа увеличи­вают продолжительность процессов коммутации, что приводит к возрастанию потерь и снижению к.п.д. преобразователя. В преобра­зователях применяют схемы выпрямления, не вызывающие посто­янного подмагничивания сердечника трансформатора на выходе инвертора. Большое влияние на работу преобразователя оказывает тип схемы фильтра, а также явление перекрытия фаз, возникающее за счет того, что диоды выпрямителя при смене полярности в течение некоторого отрезка времени, называемого временем восста­новления,проводят ток в обратном направлении. При этом вто­ричная обмотка трансформатора инвертора оказывается замкнутой почти накоротко. Транзисторы инвертора будут перегружены, вый­дут из режима насыщения, что приведет к возрастанию потерь и увеличению амплитуды пульсации выпрямленного напряжения. Фильтр, включенный после выпрямителя, оказывает существенное влияние на процесс переключения транзисторов преобразователя. Если на входе фильтра включена емкость, то время перекрытия фаз выпрямителя уменьшается, а если индуктивность, то наблюдается замедление спада тока, проходящего через диоды в течение времени восстановления. Это приводит к резкому увеличению времени перекрытия фаз и увеличению тока нагрузки инвертора в момент переключения.

    Соответствующие схемные решения, правильный выбор элемен­тов и режимов их работы позволяют конструировать преобразова­тели этого типа с к.п.д., достигающим 80-90%.

    36 Принцип построения универсального бесперебойного устройства электропитания в электросвязи

    Принципы построения источников бесперебойного питания

    В соответствии с международным стандартом IEC 60146-4 источники бесперебойного электропитания (ИБП) делятся по схемотехнической реализации и принципу действия на следующие три основные группы [1]:

    1. с отключением сети (off-line);

    2. линейно-интерактивного типа (line-interactive);

    3. с включенной сетью (on-line).

    Структурная схема ИБП типа off-line приведена на рис. 7.1. В основном режиме работы, когда первичное переменное напряжение Есудовлетворяет заданным показателям качества, питание нагрузки URосуществляется через фильтр. Основной канал передачи энергии в рассматриваемых ИБП здесь и далее показан утолщенными линиями схемы. Контроль качества напряжения UHосуществляется соответствующим контрольным реле, контакт которого S производит переключение нагрузки. В фильтре исполь­зуются элементы, выполняющие также функции ограничителя импульсных помех. Одновременно с этим через выпрямитель заряжаются аккумуляторы. Инвертор, постоянно подключенный к аккумуляторам, предназначен для преобразования постоянного напряжения в переменное — UH. При работе ИБП в основном режиме инвертор может быть отключен от аккумуляторов, а его включение обеспечивается контактом (аналогичным S) контрольного реле, однако при этом должно учитываться время выхода инвертора на номинальный режим установления выходного напряжения, которое обычно бывает значительным.



    Рис. 7.1. Структурная схема ИБП типа off-line
    Когда контрольное реле выявляет отклонение напряжения Ес , выходящее за допустимые нормы, контакт Sпереключается, ИБП переходит в автономный режим работы и нагрузка UHобеспечивается электропитанием от инвертора. ИБП имеют время переключения контакта S в пределах t = 4... 15 мс. Такой интервал времени пропадания переменного напряжения UHв подавляющем большинстве случаев не влияет на работоспособность аппаратуры вычислительной техники, так как ее собственные источники электропитания, имея внутренние сглаживающие фильтры, допускают большие значения t. Если инвертор в основном режиме отключен от аккумуляторов, то требуется выполнить пуск инвертора, и тогда типичная длительность времени tсоставит 10—20 периодов частоты сети и более, что для частоты 50 Гц составляет t > 200 мс.

    К недостатку ИБП типа off-line относится его неудовлетворительная работа при низком качестве напряжения Ес, когда имеют место частые переключения контакта S. Это определяет трудность восстановления емкости аккумулятора. Кроме того, так как нагрузка UHподключается непос­редственно к сети Ес, к фильтру предъявляются жесткие требования п« подавлению различного рода импульсных помех.

    Таким образом, термин off-line (отключенная сеть) означает, что при появлении недопустимых отклонений первичного напряжения нагрузка UHотключается от сети Еси переходит на питание от инвертора.

    Структурная схема ИБП типа line-interactive приведена на рис. 7.2. Ее от­личие от схемы на рис. 5.1 заключается в применении регулятора, который улучшает качество напряжения на нагрузке при работе в основном режиме.

    Регулятор обычно реализуется в виде ступенчатого переключателя напряжения, построенного на основе трансформатора или автотранс­форматора с несколькими обмотками. В некоторых моделях ИБП исполь­зуются более сложные стабилизаторы переменного напряжения.



    Рис. 7.2. Структурная схема ИБП типа line-interaktive
    Основным преимуществом рассматриваемого ИБП является то, что при изменениях величины напряжения Еспереключение контактом S на работу в автономном режиме происходит гораздо реже. Причем чем больше диапазон допустимых изменений напряжения Е компенсируемых регулятором, тем реже источник будет переходить в автономный режим работы. Снижается также жесткость требований к электрическим ха­рактеристикам фильтра, что уменьшает его стоимость. Это обусловливает повышение надежности работы ИБП и уменьшение энергопотребления от аккумуляторов. Однако здесь имеется такой недостаток, как кратко­временное пропадание напряжения Uпри переключении контакта S.

    Большую надежность и лучшее качество напряжения Unобеспечи­вают ИБП типа on-line (структурная схема на рис. 7.3). В подобных источниках сетевое напряжение Есчерез выпрямитель поступает на преобразователь постоянного напряжения ИПН.

    Инвертор постоянно подает питание на нагрузку, чем устраняются пере­ходные процессы переключения механических контактов. Параллельное соединение выходов ИПН и аккумуляторов обеспечивает непрерывность работы инвертора при коммутации его входного напряжения, что исключает даже кратковременные перерывы напряжения t/H. Очевидно, что диапазон допустимых изменений входного напряжения Е ИПН может быть значительным и рассчитанным на длительные статические и им­пульсные помехи.

    Преимуществом ИБП подобного типа является высокая стабильность напряжения UHв широком диапазоне воздействия дестабилизирующих факторов со стороны источника Е . Практически стабильность напряжения UHизвестных моделей ИБП подобного типа обеспечивается в пределах ± 1 ...3 % при изменении напряжения Есот нуля до 280 В. Наличие им­пульсных преобразователей (ИПН) в основном и резервном каналах



    Рис. 7.3. Структурная схема ИБП типа on-line



    передачи энергии позволяет получить более широкие возможности по реализации функций защиты нагрузки и собственно ИБП от перегрузок. Типовые ИБП обеспечивают работу устройств без переключения на аккумуляторы в диапазоне величин напряжений Ес = 160...280 В.

    Недостатком ИБП типа on-line является сравнительно невысокий КПД, что обусловлено двойным силовым преобразованием энергии постоянного напряжения (в преобразователе ИПН и инверторе) по отношению к ранее рассмотренным структурам ИБП. В частности, для источников последних модификаций КПД находится в пределах h = 85—92 %, в то время как для on-line практические значения Л на 7—15% ниже. Кроме того, наличие двух преобразователей электрической энергии увеличивает стоимость ИБП. Несмотря на эти недостатки, ИБП типа on-line нашли большое применение, так как они обеспечивают разумный компромисс между стоимостью, безопасностью и надежностью работы аппаратуры вычис­лительной техники.

    Таким образом, термин on-line (включенная сеть) означает, что сеть пер­вичного напряжения ИБП остается подключенной к основному каналу регу­лирования в существенно большем диапазоне изменений напряжения Ес.

    Дальнейшее повышение надежности ИБП типа on-line достигается путем введения в него пассивного канала (by-pass) передачи энергии из источника Еск нагрузке UwСтруктурная схема этого ИБП приведена на рис. 7.4. Здесь канал by-pass подключается контактом S при возникновении отказов, например, в инверторе или в ИПН и в аккумуляторе одновременно. Так как подобная ситуация довольно редка, введение в схему контакта S, переключение которого вызовет появление одного кратковременного перерыва напряжения UR, вполне оправданно. Последние модели ИБП обеспечивают переключение его работы в режим by-pass без переходных процессов в питании нагрузки (intelligent by-pass).

    Рис. 7.4. Структурная схема ИБП типа on-line by-pass
    Существуют различные пути совершенствования структур ИБП. Перспективным направлением является использование модульных принципов наращивания мощности нагрузки. Примером может служить параллельная двухуровневая структурная система включения ИБП (master-slave), функциональная схема которой приведена на рис. 7.5. Здесь ИБП 1 master первого уровня управляет распределением нагрузки между ИБП slave второго уровня. При отказе одного из ИБП увеличивается нагрузка на ИБП master. Это вызывает передачу соответствующих сигналов по информационным каналам связи на функционирующие ИБП slave, что создает соответствующее перераспределение выходной мощности между ними для поддержания неизменности выходного напряжения UH.

    Рассмотренная система ИБП обладает по сравнению с предыдущими более высокой надежностью и позволяет при появлении отказов в системах электропитания и электроснабжения, в том числе и железнодорожного транспорта, обеспечить функционирование нагрузки. Кроме того, наличие в ИБП типа master сигнала об отказе того или иного блока позволяет пе­редавать предупредительную информацию для эксплуатационного штата при сохранении работоспособности системы электропитания.

    Существуют также различные модификации систем электропитания (рис. 7.5).Наиболее перспективным и общим принципом их построения является использование параллельно включенных ИБП, работающих в режиме «горячего» резервирования. При этом живучесть и надежность функцио­нирования подобных ИБП обеспечивается за счет модульного исполнения и возможности блочного наращивания выходной мощности.


    Рис. 7.5. Структурная схема системы ИБП типа master-slave
    На сети связи широкое применение получила буферная система электропита­ния постоянного тока. Характерной осо­бенностью устройств бесперебойного электропитания (УБП), реализуемых по указанной системе, является объединение в одной точке выходов преобразователей-выпрямителей (УПВ), аккумуляторной батареи (АБ) и питаемой нагрузки. Такая структура позволяет получить достаточно высокую надежность подаваемой на аппа­ратуру связи электроэнергии при минима­льном количестве используемых для ее построения компонентов .
    1   2   3   4   5   6   7   8   9


    написать администратору сайта