Экзамен эпу. экзамен эпу. 1 Гальванические элементы. Классификация. Назначение. Основные характеристики. Принцип работы
Скачать 3.47 Mb.
|
При режиме импульсного подзаряда(рис. 2.5) ток выпрямителя изменяется скачкообразно в зависимости от напряжения на аккумуляторной батарее GВ. При этом выпрямитель UZобеспечивает питание нагрузки Rн совместно с батареей GВ или питает нагрузку и подзаряжает батарею. Максимальный ток выпрямителя устанавливают несколько больше тока, имеющего место в час наибольшей нагрузки, а минимальный ток нагрузки IВ min - меньше минимального тока нагрузки Iн. К достоинствам режима относятся: простота системы регулирования тока на выходе выпрямителя; небольшие пределы изменения напряжения на аккумуляторной батарее и на нагрузке (от 2,1 до 2,3 В на элемент); увеличение срока службы аккумуляторов до 10-12 лет в связи с менее глубокими циклами заряда и разряда. Этот режим используют для питания устройств автоматики. Рисунок 2.5 – Режим импульсного подзаряда: а – схема; б – диаграмма токов и напряжений; в, г – зависимости токов и напряжений от времени 7. Буферная система электропитания. Режим непрерывного подзаряда. Назначение. Основные характеристики. При такой системе питания параллельно выпрямителю UZи нагрузке включена аккумуляторная батарея GB(рис. 2.3). В случае аварии в сети переменного тока или повреждения выпрямителя дальнейшее питание нагрузки обеспечивает батарея без перерыва в подаче энергии. Аккумуляторная батарея обеспечивает надежное резервирование источников электрической энергии, и, кроме того, она совместно с фильтром питания осуществляет необходимое сглаживание пульсации. При буферной системе питания различают три режима работы: среднего тока, импульсного и непрерывного подзаряда. Рисунок 2.3 – Схема буферной системы питания При режиме непрерывного подзаряда(рис. 2.6) нагрузка Rн питается полностью от выпрямителя UZ. Заряженная аккумуляторная батарея GВполучает от выпрямителя небольшой постоянный ток подзаряда, компенсирующий саморазряд. Для осуществления указанного режима необходимо на выходе выпрямителя установить напряжение из расчета (2,2 ± 0,05) В на каждый аккумулятор и поддерживать его с погрешностью не более ±2%. При этом ток подзаряда для кислотных аккумуляторов Iп = (0,001-0,002) Сн и для щелочных аккумуляторов Iп = 0,01СН. Следовательно, для выполнения этого режима выпрямители должны иметь точные и надежные устройства стабилизации напряжения. Невыполнение этого требования приводит к перезаряду аккумуляторов или к их глубокому разряду и сульфатации. К достоинствам режима относится: достаточно высокий КПД установки, определяемый только выпрямителем (η = 0,7÷0,8); большой срок службы аккумуляторов, достигающий 18-20 лет благодаря отсутствию циклов заряда и разряда; высокая стабильность напряжения на выходе выпрямительного устройства; уменьшение эксплуатационных расходов благодаря возможности автоматизации и упрощению обслуживания аккумуляторов. Нормально аккумуляторы находятся в заряженном состоянии и не требуют непрерывного наблюдения. Недостатком режима является необходимость усложнения питающих устройств за счет элементов стабилизации и автоматизации. Режим используют в устройствах для питания аппаратуры связи Рисунок 2.6 – Режим непрерывного подзаряда:а – схема; б – диаграмма токов; в – зависимости токов и напряжений от времени 8.Безаккумуляторные и комбинированные системы электропитания. Структурные схемы. Назначение. Основные характеристики. При этой системе электрическая энергия, необходимая для питания аппаратуры, поступает от источников переменного тока через выпрямитель, аккумуляторная батарея отсутствует. В системе питания с резервным фидером и дизель-генераторным агрегатом (ДГА) (рис. 2.7) аппаратура получает питание от сети через выпрямитель UZ. В случае аварии в сети к электропитающей установке автоматически через резервный фидер Ф1 подключается второй независимый источник переменного тока. При аварии в обоих внешних источниках автоматически запускается ДГА и подключается к электропитающей установке. Систему применяют, если питаемая аппаратура допускает кратковременные перерывы в электроснабжении. Перерывы возникают при переключении с основного фидера на резервный (доли секунды) и при запуске ДГА (25-30 с). Рисунок 2.7 – Схемы системы питания с резервным фидером и дизель-генератором При двухлучевой системе питания (рис. 2.8) аппаратура питается одновременно от двух независимых источников переменного тока через самостоятельные выпрямительные устройства UZ. Рисунок 2.8 – Схема двухлучевой системы питания Внешний источник тока и выпрямительные устройства, подключенные к нему, образуют самостоятельную схему, называемую лучом. Каждый луч обеспечивает электрической энергией половину нагрузки. В случае повреждения одного внешнего источника всю нагрузку без перерыва принимает второй источник. Одновременно автоматически запускается ДГА, который через 30 с подключается вместо поврежденного источника, и двухлучевая система вновь восстанавливается. Сущность комбинированных систем питания заключается в том, что электропитающие установки (ЭПУ) на различные номинальные напряжения, кроме одной - основной ЭПУ, нормально работают по безаккумуляторной системе питания. Основная установка (обычно ЭПУ-24) работает по буферной системе. В случае аварии внешних источников переменного тока электрическая энергия, необходимая для питания всех типов аппаратуры, может быть получена за счет разряда аккумуляторной батареи основной ЭПУ. Рисунок 2.9 – Схемы питания с преобразованием постоянного тока (а) и с инвертором (б) В системе питания с преобразователями постоянного тока (рис. 2.9, а) при аварии внешнего источника тока к батарее подключаются преобразователи U-Unпостоянного тока, обеспечивающие получение различных номинальных напряжений, необходимых для питания аппаратуры. В системе питания с инвертором (преобразователем постоянного тока в переменный) (рис. 2.9,6) при аварии внешнего источника тока к батарее подключается инвертор U, с выхода которого переменный ток поступает к выпрямителям UZ1-UZn. 9. Выпрямители. Структурная схема. Назначение. Классификация и параметры. Выпрямителем называется преобразователь переменного напряжени и тока в в постоянный напряжение и ток. Выпрямитель (рис. 3.1) состоит из трансформатора Т, схемы выпрямления UZ. и сглаживающего фильтра ZQ. Помимо преобразования входного напряжения переменного тока, трансформатор устраняет гальваническую связь между источником переменного тока и питаемой аппаратурой. В отдельных случаях он преобразует число фаз исходного напряжения. Схема выпрямления, состоящая из вентиля или группы вентилей, преобразует переменный ток в постоянный. Сглаживающий фильтр уменьшает пульсацию выпрямленного напряжения до допустимого значения. Рисунок 3.1 – Схема выпрямительного устройства Классификация выпрямителей. Схемы выпрямления классифицируют по типу применяемых вентилей - газоразрядные, полупроводниковые с управляемыми и неуправляемыми вентилями; числу фаз напряжения питающей сети - одно- и трехфазные; числу фаз напряжения вторичной обмотки трансформатора - одно-, двух-, трех-, шести- и многофазные; числу используемых полупериодов напряжения - одно- и двухполупериодные; числу плеч и числу групп вентилей. Плечом выпрямительной схемы называют цепь последовательного соединения обмотки трансформатора и вентиля (рис. 3.7, а). Рисунок 3.7 – Элементы классификации схем выпрямления: а – плечо; б – два плеча; в – одногруппная схема; г – двухгруппная схема Параметры выпрямителей. Заданными обычно являются параметры нагрузки: выпрямленное напряжение U0, выпрямленный ток I0 и коэффициент пульсации nn. Известны Для трансформатора такими параметрами являются: действующие напряжения U1, U2 и токи I1, I2для первичной и вторичной обмоток; расчетные мощности первичной и вторичной обмоток S1, S2; расчетная мощность трансформатора ST и коэффициент использования трансформатора KT. Полезная мощность выпрямителя -это мощность, выделяемая в нагрузке , где I0 - постоянная составляющая выпрямленного тока. Расчетная мощность обмоток трансформатора: , uде U1, U2 - действующие напряжения на первичной и вторичной обмотках трансформатора; I1, I2 - действующие токи в первичных и вторичных обмотках; т1, т2 - соответственно число фазных первичных и вторичных обмоток. Коэффициент использования первичной и вторичной обмоток трансформатора , . Расчетная мощность трансформатора . Коэффициент использования трансформатора . Для выбора диодов этими параметрами являются средний Iд.ср.(определяет допустимые токовые нагрузки полупроводниковых вентилей) и действующий Iд ток (определяет нагрев вентиля и возможные потери мощности). Амплитудный ток диода- это максимальный ток, проходящий через диод. Обратное напряжение, приходящееся на один диод при работе его в выпрямительной схеме, определяется наибольшей разностью потенциалов между анодом и катодом за время, когда диод не проводит ток. Число фаз выпрямления - вспомогательный параметр, характеризующий число максимальных пульсаций выпрямленного напряжения за период т = рq(3.1), где р и qсоответственно число фаз сети и выпрямленных полупериодов. Частота первой (основной) гармоники переменной составляющей выпрямленного напряжения (3.2), где f - частота сети. Коэффициент пульсации показывает соотношение между амплитудой напряжения первой гармоники и постоянной составляющей в выпрямленном напряжении , где U1m - амплитуда напряжения первой гармоники; U0 - напряжение постоянной составляющей. Вынужденное намагничивание трансформатора относится к специфическим особенностям работы трансформатора в выпрямительных схемах и обусловлено тем, что токи во вторичных обмотках при некоторых схемах выпрямления протекают только в одном направлении. Поэтому сердечник намагничивается не только переменной, но и постоянной составляющими тока вторичной обмотки. В результате чего кривая намагничивания теряет симметричность, так как одна ветвь заходит в область большего насыщения. Это приводит к уменьшению магнитной проницаемости сердечника, уменьшению индуктивности обмоток и увеличению тока холостого хода. Повышение тока холостого хода и рост потерь на гистерезис являются причиной дополнительных потерь, что приводит к увеличению габаритных размеров и массы сердечников трансформатора. Внешней или нагрузочной характеристикой выпрямителя называется зависимость выходного напряжения от тока нагрузки U0f(I0), которой характеризуются рабочие свойства любого Рисунок 3.8 – Внешняя характеристика выпрямителя: источника тока, в частности выпрямителя (рис. 3.8). Внутреннее сопротивление определяется падением напряжения на трансформаторе и вентилях. Внешняя характеристика всегда носит падающий характер (чем наклон меньше, тем лучше). 10. Выпрямительные устройства. Однофазная однополупериодная схема. Принцип работы. Основные характеристики. Выпрямителем называется преобразователь переменного напряжени и тока в в постоянный напряжение и ток. Выпрямитель (рис. 3.1) состоит из трансформатора Т, схемы выпрямления UZ. и сглаживающего фильтра ZQ. Помимо преобразования входного напряжения переменного тока, трансформатор устраняет гальваническую связь между источником переменного тока и питаемой аппаратурой. В отдельных случаях он преобразует число фаз исходного напряжения. Схема выпрямления, состоящая из вентиля или группы вентилей, преобразует переменный ток в постоянный. Сглаживающий фильтр уменьшает пульсацию выпрямленного напряжения до допустимого значения. Рисунок 3.1 – Схема выпрямительного устройства Данная схема наиболее простая из всех схем выпрямления. При появлении положительного полуволны на конце вторичной обмотки трансформатора, диод открывается, и ток проходит через нагрузку Rн. При появлении отрицательного полуволны диод закрыт, и ток в нагрузке отсутствует. Так как сопротивление обмоток трансформатора и диода в прямом направлении принято равным нулю, то во время положительного полупериода напряжение на нагрузке равно напряжению на вторичной обмотке и0 = и2. Во время отрицательного полупериода сопротивление диода принято равным бесконечности, ток в нагрузке отсутствует и напряжение на ее зажимах равно нулю. Рис. 3.9. Однофазная однополупериодная схема выпрямления (а) и зависимости напряжений и токов от времени: б,в– соответственно напряжения на первичной и на вторичных обмотках трансформатора; г – ток через нагрузку и напряжение на ее зажимах; д – ток в первичной обмотке; е – напряжение между электродами диода Характер изменения тока в нагрузке при открытом диоде точно такой же, как характер изменения напряжения на вторичной обмотке трансформатора. Это определяется принятой активной нагрузкой схемы выпрямления. Через диод и вторичную обмотку трансформатора протекает тот же ток, что и через нагрузку. Поэтому вторичную обмотку используют неэффективно, так как ток через нее проходит только в течение одной половины периода. В однофазной однополупериодной схеме имеется вынужденное намагничивание сердечника трансформатора, создаваемое постоянной составляющей тока вторичной обмотки трансформатора. Так как постоянная составляющая тока вторичной обмотки не трансформируется в первичную, поэтому ток в ней имеет форму только переменной составляющей (рис. 3.9, д). Максимальное обратное напряжение на диоде равно амплитудному напряжению на вторичной обмотке трансформатора (рис. 3.9, е). Основным преимуществом однополупериодной схемы является ее простота. К недостаткам схемы относятся: увеличенные габаритные размеры и масса сердечника вследствие плохого использования обмоток и наличия вынужденного намагничивания сердечника; значительные обратные напряжения и ток, проходящий через диод; большая переменная составляющая напряжения и низкая частота пульсаций, что приводит к увеличению габаритных размеров и массы фильтра. Данную схему используют в маломощных выпрямителях с большим сопротивлением нагрузки. Характеристики: действующий токвторичной обмотки Действующий ток первичной обмотки Расчетная мощность трансформатора Расчетные мощности первичной и вторичной обмоток трансформатора и . С учетом формул SТ = 3,09 Р0. На основании разложения в ряд Фурье переменной составляющей выпрямленного напряжения амплитуда первой гармоники , тогда с учетом формулы (3.3) коэффициент пульсации . 11.Выпрямительные устройства. Однофазная двухполупериодная схема. Принцип работы. Основные характеристики. . Выпрямитель (рис. 3.1) состоит из трансформатора Т, схемы выпрямления UZ. и сглаживающего фильтра ZQ. Помимо преобразования входного напряжения переменного тока, трансформатор устраняет гальваническую связь между источником переменного тока и питаемой аппаратурой. В отдельных случаях он преобразует число фаз исходного напряжения. Схема выпрямления, состоящая из вентиля или группы вентилей, преобразует переменный ток в постоянный. Сглаживающий фильтр уменьшает пульсацию выпрямленного напряжения до допустимого значения. Рисунок 3.1 – Схема выпрямительного устройства Эта схема может быть представлена как две однополупериодные схемы, работающие на общую нагрузку. При появлении положительного потенциала на конце одной из половин вторичной обмотки трансформатора Т относительно точки О открывается соответствующий диод и ток проходит через нагрузку RН.. При изменении полярности на вторичной обмотке открывается другой диод, и ток вновь проходит через нагрузку. Таким образом, ток в нагрузке всегда протекает в одном направлении, т. е. имеет место выпрямление. Рисунок 3.10 – Однофазная двухполупериодная схема выпрямления (а) и зависимости напряжений и токов от времени: б – напряжение между концами каждой из двух половин вторичной обмотки трансформатора; в- выпрямленные напряжения и ток; г и д – токи, протекающие через диоды и половины обмоток трансформатора; е – ток в первичной обмотке трансформатора; ж - напряжение между электродами диода VD2 Напряжения и сдвинуты по фазе на половину периода, поэтому по числу фаз вторичной обмотки схема является двухфазной. В нагрузке ток протекает в течение обоих полупериодов напряжения на вторичной обмотке, поэтому выпрямление двухполупериодное (рисунок 3.10, в). Диоды VD1 и VD2 работают поочередно, каждый в течение одной половины периода (рисунок 3.10, г и д). Так как токи протекают по каждой половине вторичной обмотки трансформатора поочередно и имеют противоположные направления, то в первичной обмотке трансформатора протекает ток, форма которого синусоидальна (рисунок 3.10, е). Вынужденное намагничивание сердечника трансформатора отсутствует, так как потоки, создаваемые постоянными составляющими тока в половинах вторичной обмотки, компенсируют друг друга. В первый полупериод напряжения диод VD1открыт. Его сопротивление равно нулю, и потенциалы точек а и с равны между собой. Следовательно, к диоду VD2 приложено напряжение, равное сумме напряжений и . Максимальное значение этой разности потенциалов равно удвоенному амплитудному значению напряжения на одной половине вторичной обмотки (рисунок 3.10, ж). Из кривых (рисунок 3.11) видно, что постоянная составляющая выпрямленного напряжения в 2 раза больше, чем в однополупериодной схеме выпрямления. Поэтому Рисунок 3.11 – Зависимость выпрямленного напряжения и тока от времени для расчета однофазной двухполупериодной схемы выпрямления По сравнению с однофазной однополупериодной схемой выпрямления данная схема имеет трансформатор с меньшими габаритными размерами и массой вследствие лучшего использования обмоток трансформатора и отсутствия вынужденного намагничивания; меньшие габаритные размеры и массу фильтра из-за увеличения частоты пульсации; амплитудный ток диода уменьшается в 2 раза. Недостатком схемы является необходимость вывода средней точки вторичной обмотки трансформатора. Схема может быть использована в выпрямителях с низким напряжением и значительным током нагрузки. Включение одного диода в цепь тока нагрузки обеспечивает малые потери в выпрямителе. |