Главная страница
Навигация по странице:

  • Связь нервной и эндокринной систем

  • Классификация эндокринных желез

  • Щитовидная железа

  • Околощитовидные железы (паращитовидные железы)

  • Надпочечники

  • гиста методичка ворд. 1. история развития гистологии. Развитие гистологии в россии тема методы исследования в гистологии. Приготовление гистологического препарата тема введение в курс гистологии


    Скачать 479.73 Kb.
    Название1. история развития гистологии. Развитие гистологии в россии тема методы исследования в гистологии. Приготовление гистологического препарата тема введение в курс гистологии
    Анкоргиста методичка ворд.docx
    Дата30.03.2018
    Размер479.73 Kb.
    Формат файлаdocx
    Имя файлагиста методичка ворд.docx
    ТипДокументы
    #17410
    страница11 из 22
    1   ...   7   8   9   10   11   12   13   14   ...   22
    Тема 20. ЭНДОКРИННАЯ СИСТЕМА

    Эндокринная система вместе с нервной системой оказывают регуляторное воздействие на все другие органы и системы организма, заставляя его функционировать как единую систему.

    К эндокринной системе относятся железы, не имеющие выводных протоков, но выделяющие во внутреннюю среду организма высокоактивные биологические вещества, действующие на клетки, ткани и органы вещества (гормоны), стимулирующие или ослабляющие их функции.

    Клетки, у которых выработка гормонов становится основной или преобладающей функцией, получают наименование эндокринных. В организме человека эндокринная система представлена секреторными ядрами гипоталамуса, гипофизом, эпифизом, щитовидной, околощитовидными железами, надпочечниками, эндокринными частями половых и поджелудочной желез, а также отдельными железистыми клетками, рассеянными по другим (неэндокринным) органам или тканям.

    С помощью выделяемых эндокринной системой гормонов осуществляются регуляция и координация функций организма и приведение их в соответствие с его потребностями, а также с раздражениями, получаемыми из внешней и внутренней среды.

    По химической природе большинство гормонов принадлежит к белкам – протеинам или гликопротеинам. Другие же гормоны являются производными аминокислот (тирозина) или стероидами. Многие гормоны, попадая в ток крови, связываются с сывороточными белками и в виде таких комплексов транспортируются по организму. Соединение гормона с белком-носителем хотя и предохраняет гормон от преждевременной деградации, но ослабляет его активность. Освобождение гормона от носителя происходит в клетках органа, воспринимающего данный гормон.

    Поскольку гормоны выделяются в ток крови, обильное кровоснабжение эндокринных желез составляет непременное условие их функционирования. Каждый гормон действует только на те клетки-мишени, которые имеют специальные химические рецепторы в плазматических мембранах.

    К органам-мишеням, обычно причисляемым к неэндокринным, можно отнести почку, в юкстагломерулярном комплексе которой вырабатывается ренин; слюнные и предстательную железы, в которых обнаруживаются особые клетки, продуцирующие фактор, стимулирующий рост нервов; а также специальные клетки (энтериноциты), локализующиеся в слизистой оболочке желудочно-кишечного тракта и вырабатывающие ряд энтериновых (кишечных) гормонов. Многие гормоны (в том числе эндорфины и энкефалины), обладающие широким спектром действия, образуются в головном мозге.
    Связь нервной и эндокринной систем

    Нервная система, посылая свои эфферентные импульсы по нервным волокнам прямо к иннервируемому органу, вызывает направленные локальные реакции, которые быстро наступают и столь же быстро прекращаются.

    Гормональным дистантным влияниям принадлежит преимущественная роль в регуляции таких общих функций организма, как обмен веществ, соматический рост, репродуктивные функции. Совместное участие нервной и эндокринной систем в обеспечении регуляции и координации функций организма определяется тем, что регуляторные влияния, оказываемые как нервной, так и эндокринной системами, реализуются принципиально одинаковыми механизмами.

    Вместе с тем все нервные клетки проявляют способность синтезировать белковые вещества, о чем свидетельствуют сильное развитие гранулярной эндоплазматической сети и обилие рибонуклеопротеидов в их перикарионах. Аксоны таких нейронов, как правило, заканчиваются на капиллярах, и синтезированные продукты, аккумулировавшиеся в терминалях, выделяются в кровь, с током которой разносятся по организму и оказывают в отличие от медиаторов не локальное, а дистантное регулирующее действие подобно гормонам эндокринных желез. Такие нервные клетки получили наименование нейросекреторных, а вырабатываемые и выделяемые ими продукты – нейрогормонов. Нейросекреторные клетки, воспринимая, как всякий нейроцит, афферентные сигналы от других отделов нервной системы, посылают свои эфферентные импульсы через кровь, т. е. гуморально (как эндокринные клетки). Поэтому нейросекреторные клетки, занимая в физиологическом отношении промежуточное положение между нервными и эндокринными, объединяют нервную и эндокринную системы в единую нейроэндокринную систему и таким образом выступают в роли нейроэндокринных трансмиттеров (переключателей).

    В последние годы было установлено, что в составе нервной системы имеются пептидергические нейроны, которые, помимо медиаторов, выделяют и ряд гормонов, способных модулировать секреторную деятельность эндокринных желез. Поэтому, как уже отмечалось выше, нервная и эндокринная системы выступают как единая регулирующая нейроэндокринная система.
    Классификация эндокринных желез

    В начале развития эндокринологии как науки железы внутренней секреции пытались группировать по их происхождению из того или иного эмбрионального зачатка зародышевых листков. Однако дальнейшее расширение знаний о роли эндокринных функций в организме показало, что общность или близость эмбриональных закладок совершенно не предрешает совместного участия желез, развивающихся из таких зачатков, в регуляции функций организма.

    Согласно современным представлениям, в эндокринной системе выделяют следующие группы желез внутренней секреции: нейроэндокринные трансмиттеры (секреторные ядра гипоталамуса, эпифиз), которые с помощью своих гормонов переключают информацию, поступающую в центральную нервную систему, на центральное звено регуляции аденогипофиззависимых желез (аденогипофиз) и нейрогемальный орган (задняя доля гипофиза, или нейрогипофиз). Аденогипофиз благодаря гормонам гипоталамуса (либеринам и статинам) выделяет адекватное количество тропных гормонов, которые стимулируют функцию аденогипофиззависимых желез (коры надпочечников, щитовидной и половой желез). Взаимоотношения аденогипофиза и зависимых от него желез внутренней секреции осуществляются по принципу обратной связи (или плюс-минус). Нейрогемальный орган собственных гормонов не продуцирует, но накапливает гормоны крупноклеточных ядер гипоталамуса (окситоцин, АДГ-вазопрессин), затем выделяет их в кровяное русло и таким образом регулирует деятельность так называемых органов-мишеней (матки, почек). В функциональном отношении нейросекреторные ядра, эпифиз, аденогипофиз и нейрогемальный орган составляют центральное звено эндокринной системы, тогда как эндокринные клетки неэндокринных органов (пищеварительной системы, воздухоносных путей и легких, почек и мочеотводящих путей, вилочковой железы), аденогипофиззависимые железы (щитовидная железа, кора надпочечников, половые железы) и аденогипофизнезависимые железы (околощитовидные железы, мозговое вещество надпочечников) являются периферическими железами внутренней секреции (или железами-мишенями).

    Суммируя все выше сказанное, можно сказать, что эндокринная система представлена следующими основными структурными компонентами.
    1. Центральные регуляторные образования эндокринной системы:

    1) гипоталамус (нейросекреторные ядра);

    2) гипофиз;

    3) эпифиз.

    2. Периферические эндокринные железы:

    1) щитовидная железа;

    2) околощитовидные железы;

    3) надпочечники:

    а) корковое вещество;

    б) мозговое вещество надпочечников.

    3. Органы, объединяющие эндокринные и неэндокринные функции:

    1) гонады:

    а) семенник;

    б) яичник;

    2) плацента;

    3) поджелудочная железа.

    4. Одиночные гормонопродуцирующие клетки:

    1) нейроэндокринные клетки группы ПОДПА (APUD) (нервного происхождения);

    2) одиночные гормонопродуцирующие клетки (не нервного происхождения).
    Гипоталамус

    Гипоталамус занимает базальную область межуточного мозга и окаймляет нижнюю часть III желудочка головного мозга. Полость III желудочка продолжается в воронку, стенка которой становится гипофизарной ножкой и на своем дистальном конце дает начало задней доле гипофиза (или нейрогипофизу).

    В сером веществе гипоталамуса обособляются его ядра (свыше 30 пар), которые группируются в переднем, среднем (медиобазальном или туберальном) и заднем отделах гипоталамуса. Некоторые из гипоталамических ядер представляют скопления нейросекреторных клеток, а другие образованы сочетанием нейросекреторных клеток и нейронов обычного типа (преимущественно адренергическими).

    В ядрах среднего гипоталамуса вырабатываются гипоталамические аденогипофизотропные гормоны, которые регулируют секрецию (и, вероятно, также продукцию) гормонов в передней и средней долях гипофиза. Аденогипофизотропные гормоны являются низкомолекулярными белками (олигопептидами), которые либо стимулируют (либерины), либо угнетают (статины) соответствующие гормонообразовательные функции аденогипофиза. Важнейшие ядра этой части гипоталамуса локализуются в сером бугре: аркуатное, или инфундибулярное, ядро и вентромедиальное ядро. Вентромедиальное ядро отличается большими размерами и оказывается основным местом выработки аденогипофизотропных гормонов, но наряду с ним эта функция присуща также аркуатному ядру. Указанные ядра образованы мелкими нейросекреторными клетками в сочетании с адренергическими нейронами обычного типа. Аксоны как мелких нейросекреторных клеток медиобазального гипоталамуса, так и соседствующих с ними адренергических нейронов направляются в медиальную эминенцию, где заканчиваются на петлях первичной капиллярной сети.

    Таким образом, нейросекреторные образования гипоталамуса делятся на две группы: холинергическую (крупноклеточные ядра переднего гипоталамуса) и адренергическую (мелкие нейросекреторные клетки медиобазального гипоталамуса).

    Деление нейросекреторных образований гипоталамуса на пептидохолинергические и пептидоадренергические отражает их принадлежность соответственно к парасимпатической или симпатической части гипоталамуса.

    Связь переднего гипоталамуса с задней долей гипофиза, а медиобазального гипоталамуса – с аденогипофизом позволяет расчленить гипоталамо-гипофизарный комплекс на гипоталамонейрогипофизарную и гипоталамо-аденогипофизарную системы. Значение задней доли гипофиза состоит в том, что в ней аккумулируются и выделяются в кровь нейрогормоны, вырабатываемые крупноклеточными пептидохолинергическими ядрами переднего гипоталамуса. Следовательно, задняя доля гипофиза не является железой, а представляет собой вспомогательный нейрогемальный орган гипоталамо-нейрогипофизарной системы.

    Аналогичным нейрогемальным органом гипоталамо-аденогипофизарной системы оказывается медиальная эминенция, в которой накапливаются и поступают в кровь аденогипофизотропные гормоны (либерины и статины), продуцируемые пептидоадренергическими нейросекреторными клетками медиобазального гипоталамуса.
    Гипофиз

    В гипофизе выделяют несколько долей: аденогипофиз, нейрогипофиз.

    В аденогипофизе различают переднюю, среднюю (или промежуточную) и туберальную части. Передняя часть имеет трабекулярное строение. Трабекулы, сильно разветвляясь, сплетаются в узкопетлистую сеть. Промежутки между ними, заполнены рыхлой соединительной тканью, по которой проходят многочисленные синусоидные капилляры.

    В каждой трабекуле можно различить несколько разновидностей железистых клеток (аденоцитов). Одни из них, располагающиеся по периферии трабекул, более крупные по размерам, содержат секреторные гранулы и интенсивно окрашиваются на гистологических препаратах, поэтому эти клетки именуют хромофильными. Другие клетки хромофобные, занимающие середину трабекул, отличаются от хромофильных слабо окрашивающейся цитоплазмой. Ввиду количественного преобладания в составе трабекул хромофобных клеток их иногда называют главными.

    Хромофильные клетки делятся на базофильные и ацидофильные. Базофильные клетки, или базофилы, продуцируют гликопротеидные гормоны, и их секреторные гранулы на гистологических препаратах окрашиваются основными красками.

    Среди них различают две основные разновидности – гонадотропные и тиротропные.

    Одни из гонадотропных клеток вырабатывают фолликулостимулирующий гормон (фоллитропин), другим приписывается продукция лютеинизирующего гормона (лютропина).

    Если организм испытывает недостаточность половых гормонов, продукция гонадотропинов, особенно фоллитропина, настолько усиливается, что некоторые гонадотропные клетки гипертрофируются и сильно растягиваются крупной вакуолью, в результате чего цитоплазма приобретает вид тонкого ободка, а ядро оттесняется на край клетки («клетки кастрации»).

    Вторая разновидность – тиротропная клетка, продуцирующая тиротропный гормон (тиротропин), – отличается неправильной или угловатой формой. При недостаточности в организме гормона щитовидной железы продукция тиротропина усиливается, а тиротропоциты частично трансформируются в клетки тиреоидэктомии, которые характеризуются более крупными размерами и значительным расширением цистерн эндоплазматической сети, вследствие чего цитоплазма приобретает вид крупноячеистой пены. В этих вакуолях обнаруживаются альдегидфуксинофильные гранулы, более крупные, чем секреторные гранулы исходных тиротропоцитов.

    Для ацидофильных клеток, или ацидофилов, характерны крупные плотные гранулы, окрашивающиеся на препаратах кислыми красителями. Ацидофильные клетки также делятся на две разновидности: соматотропные, или соматотропоциты, вырабатывающие соматотропный гормон (соматотропин), и маммотропные, или маммотропоциты, вырабатывающие лактотропный гормон (пролактин).

    Функция этих клеток аналогична базофильным.

    Кортикотропная клетка в передней доле гипофиза вырабатывает адренокортикотропный гормон (АКТГ или кортикотропин), активирующий кору надпочечников.

    Средняя часть аденогипофиза представляет собой узкую полоску многослойного эпителия, однородного по строению. Аденоциты средней доли способны вырабатывать белковый секрет, который, накапливаясь между соседними клетками, приводит к формированию в средней доли фолликулоподобных полостей (кист).

    В средней части аденогипофиза вырабатывается меланоцитостимулирующий гормон (меланотропин), влияющий на пигментный обмен и пигментные клетки, а также липотропин – гормон, усиливающий метаболизм жиролипоидных веществ.

    Туберальная часть – отдел аденогипофизарной паренхимы, прилежащей к гипофизарной ножке и соприкасающейся с нижней поверхностью медиальной эминенции гипоталамуса.

    Функциональные свойства туберальной части выяснены недостаточно.

    Задняя доля гипофиза – нейрогипофиз – образована нейроглией. Глиальные клетки этой доли представлены преимущественно небольшими отростчатыми или веретеновидными клетками – питуицитами. В заднюю долю входят аксоны нейросекреторных клеток супраоптического и паравентрикулярного ядер переднего гипоталамуса. В задней доле эти аксоны заканчиваются расширенными терминалями (накопительными тельцами, или тельцами Херринга), которые контактируют с капиллярами.

    Задняя доля гипофиза накапливает антидиуретический гормон (вазопрессин) и окситоцин, вырабатываемые нейросекреторными клетками супраоптического и паравентрикулярного ядер переднего гипоталамуса. Возможно, что в передаче этих гормонов из накопительных телец в кровь участвуют питуициты.

    Иннервация. Гипофиз, а также гипоталамус и эпифиз получают нервные волокна от шейных ганглиев (главным образом от верхних) симпатического ствола. Экстирпация верхних шейных симпатических ганглиев или перерезка шейного симпатического ствола приводят к усилению тиротропной функции гипофиза, тогда как раздражение тех же ганглиев вызывает ее ослабление.

    Кровоснабжение. Верхние гипофизарные артерии вступают в медиальную эминенцию, где распадаются на первичную капиллярную сеть. Ее капилляры образуют петли и клубочки, внедряющиеся в эпендиму медиальной эминенции. К этим петлям подходят аксоны пептидоадренергических клеток медиобазального гипоталамуса, образуя на капиллярах аксовазальные синапсы (контакты), в которых совершается передача гипоталамических либеринов и статинов в ток крови. Затем капилляры первичной сети собираются в портальные вены, идущие вдоль гипофизарной ножки в паренхиму аденогипофиза, где они вновь распадаются на вторичную капиллярную сеть, синусоидные капилляры которой, разветвляясь, оплетают трабекулы. Наконец, синусоиды вторичной сети сливаются в выносящие вены, отводящие кровь, обогатившуюся аденогипофизарными гормонами, в общую циркуляцию.
    Щитовидная железа

    В щитовидной железе выделяют две доли (правую и левую соответственно) и перешеек.

    Снаружи она окружена плотной соединительно-тканной капсулой, от которой внутрь железы отходят перегородки. Составляя строму железы, они разветвляются и делят тиреоидную паренхиму на дольки.

    Функциональной и структурной единицей щитовидной железы являются фолликулы – замкнутые шаровидные или округлые образования варьирующихся размеров с полостью внутри. Иногда стенки фолликулов образуют складки, и фолликулы приобретают неправильные очертания. В просвете фолликулов накапливается секреторный продукт – коллоид, имеющий при жизни консистенцию вязкой жидкости и состоящий в основном из тиреоглобулина.

    Кроме того, в соединительно-тканных прослойках всегда встречаются лимфоциты и плазматические клетки, количество которых при ряде заболеваний (тиреотоксикозе, аутоиммунном тиреоидите) резко увеличивается вплоть до возникновения лимфоидных скоплений и даже лимфоидных фолликулов с центрами размножения. В тех же межфолликулярных прослойках обнаруживаются парафолликулярные клетки, а также тучные клетки (тканевые базофилы).

    Тироциты – железистые клетки щитовидной железы, составляющие стенку (выстилку) фолликулов и располагающиеся в один слой на базальной мембране, ограничивают фолликул снаружи. Форма, объем и высота тироцитов изменяются в соответствии со сдвигами функциональной активности щитовидной железы.

    Когда же потребности организма в тиреоидном гормоне возрастают и функциональная активность щитовидной железы усиливается (гиперфункциональное состояние), тироциты фолликулярной выстилки увеличиваются в объеме и высоте и принимают призматическую форму.

    Интрафолликулярный коллоид становится более жидким, в нем появляются многочисленные вакуоли, и на гистологических препаратах он приобретает вид пены.

    Апикальная поверхность тироцита образует микроворсинки, вдающиеся в просвет фолликула. По мере усиления функциональной активности щитовидной железы количество и размеры микроворсинок возрастают. Одновременно базальная поверхность тироцитов, почти ровная в период функционального покоя щитовидной железы, при активизации ее становится складчатой, что приводит к увеличению контакта тироцитов с перикапиллярными пространствами.

    Секреторный цикл любой железистой клетки состоит из следующих фаз: поглощения исходных веществ, синтеза гормона и его выделения.

    Фаза продукции. Выработка тиреоглобулина (а следовательно, тиреоидного гормона) начинается в цитоплазме базальной части тироцита и завершается в полости фолликула на его апикальной поверхности (на границе с интрафолликулярным коллоидом). Исходные продукты (аминокислоты, соли), приносимые к щитовидной железе кровью и поглощаемые тироцитами через их основание, концентрируются в эндоплазматической сети, и на рибосомах совершается синтез полипептидной цепочки – основы будущей молекулы тиреоглобулина. Получающийся продукт накапливается в цистернах эндоплазматической сети и затем перемещается в зону пластинчатого комплекса, где конденсируется тиреоглобулин (но еще не йодированный) и формируются мелкие секреторные везикулы, смещающиеся затем в верхнюю часть тироцита. Йод поглощается тироцитами из крови в форме йодида, и синтезируется тироксин.

    Фаза выведения. Осуществляется путем реабсорбции интрафолликулярного коллоида. В зависимости от степени активации щитовидной железы эндоцитоз протекает в разных формах. Выведение гормона из железы, находящейся в состоянии функционального покоя или слабого возбуждения, протекает без образования апикальных псевдоподий и без появления капель интрацеллюлярного коллоида внутри тироцитов. Оно осуществляется путем протеолиза тиреоглобулина, совершающегося в периферическом слое интрафолликулярного коллоида на границе с микроворсинками, и последующего микропиноцитоза продуктов этого расщепления.

    Парафолликулярные клетки (кальцитониноциты), встречающиеся в тиреоидной паренхиме, резко отличаются от тироцитов отсутствием способности поглощать йод. Как упоминалось выше, они вырабатывают белковый гормон – кальцитонин (тирокальцитонин), понижающий уровень кальция в крови и являющийся антагонистом паратирина (гормона околощитовидных желез).
    Околощитовидные железы (паращитовидные железы)

    Считается, что у каждого из полюсов щитовидной железы находятся паращитовидные железы (всего их 4 – 6 шт.)

    Каждая околощитовидная железа окружена тонкой соединительно-тканной капсулой. Их паренхима образована эпителиальными тяжами (трабекулами) либо скоплениями железистых клеток (паратироцитов), разделенными тонкими прослойками рыхлой соединительной ткани с многочисленными капиллярами.

    Среди паратироцитов различаются главные, промежуточные и ацидофильные (оксифильные) клетки, которые, однако, следует рассматривать не как отдельные разновидности железистых клеток околощитовидных желез, а как функциональные или возрастные состояния паратироцитов.

    Во время усиления секреторной активности околощитовидных желез главные клетки набухают и увеличиваются в объеме, в них гипертрофируются эндоплазматическая сеть и пластинчатый комплекс. Выделение паратирина из железистых клеток в межклеточные щели осуществляется путем экзоцитоза. Высвобожденный гормон поступает в капилляры и выносится в общую циркуляцию.

    Кровоснабжение щитовидной и паращитовидных желез осуществляется из верхних и нижних щитовидных артерий.
    Надпочечники

    Парные органы, образованные сочетанием двух самостоятельных желез разного происхождения и различного физиологического значения: корковой и мозговой (медуллярной). Гормоны надпочечников принимают участие в защитно-приспособительных реакциях организма, регуляции обмена веществ и деятельности сердечно-сосудистой системы.

    В надпочечниках выделяют: корковый слой и мозговой слой.

    Корковое вещество надпочечников делится на три зоны: клубочковую, пучковую и сетчатую.

    Клубочковая (наружная) зона образована железистыми клетками (адренокортикоцитами) удлиненной формы, которые наслаиваются друг на друга, образуя округлые скопления, чем и обусловливается наименование данной зоны.

    В клетках клубочковой зоны отмечается большое содержание рибонуклеопротеидов и высокая активность ферментов, участвующих в стероидогенезе.

    Клубочковая зона вырабатывает альдостерон – гормон, регулирующий уровень натрия в организме и предотвращающий потерю организмом этого элемента с мочой. Поэтому альдостерон может быть назван минералокортикоидным гормоном. Минералокортикоидная функция обязательна для жизни, и поэтому удаление или разрушение обоих надпочечников, захватывающее их клубочковую зону, смертельно. Одновременно минералокортикоиды ускоряют течение воспалительных процессов и способствуют образованию коллагена.

    Среднюю часть коркового вещества занимает наибольшая по ширине пучковая зона. Адренокортикоциты этой зоны отличаются крупными размерами и кубической или призматической формой, их ось ориентируется вдоль эпителиального тяжа.

    Пучковая зона коры надпочечников вырабатывает глюкокортикоидные гормоны – кортикостерон, кортизол (гидрокортизон) и кортизон. Эти гормоны влияют на обмен углеводов, белков и липидов, усиливают процессы фосфорилирования и способствуют образованию веществ, аккумулирующих и освобождающих энергию в клетках и тканях организма. Глюкокортикоиды способствуют глюконеогенезу (т. е. образованию глюкозы за счет белков), отложению гликогена в печени и миокарде, мобилизации тканевых белков. Глюкокортикоидные гормоны повышают сопротивляемость организма к действию различных повреждающих агентов среды, например к тяжелым травмам, отравлению ядовитыми веществами и интоксикациям бактериальными токсинами, а также в других экстремальных состояниях, мобилизуя и усиливая защитные и компенсаторные реакции организма.

    В то же время глюкокортикоиды усиливают гибель лимфоцитов и эозинофилов, приводя к лимфоцитопении и эозинопении крови, и ослабляют как воспалительные процессы, так и иммуногенез (образование антител).

    Во внутренней сетчатой зоне эпителиальные тяжи теряют правильное расположение и, разветвляясь, образуют рыхлую сеть, в связи с чем данная зона коры получила свое название. Адренокортикоциты в этой зоне уменьшаются в объеме и становятся разнообразными по форме (кубическими, округлыми или многоугольными).

    В сетчатой зоне вырабатывается андрогенный гормон (мужской половой гормон, близкий по химической природе и физиологическим свойствам к тестостерону семенника). Поэтому опухоли коры надпочечников у женщин нередко оказываются причиной развития вторичных половых признаков мужского пола, например усов и бороды. Кроме того, в сетчатой зоне образуются и женские половые гормоны (эстроген и прогестерон), но в небольших количествах.

    Мозговая часть надпочечников отделена от корковой части тонкой, местами прерывающейся, внутренней соединительнотканной капсулой. Мозговое вещество надпочечников образовано скоплением сравнительно крупных клеток, преимущественно округлой формы, расположенных между кровеносными сосудами. Эти клетки являются видоизмененными симпатическими нейронами, в них содержатся катехоламины (норадреналин и адреналин).

    По физиологическому действию оба катехоламина сходны, но норадреналин является медиатором, опосредующим передачу нервного импульса с постганглионарного симпатического нейрона на иннервируемый эффектор, тогда как адреналин оказывается гормоном и медиаторным свойством не обладает. Норадреналин и адреналин проявляют сосудосуживающее действие и повышают артериальное давление, но сосуды головного мозга и поперечно-полосатых мышц под влиянием адреналина расширяются. Адреналин повышает уровень глюкозы и молочной кислоты, усиливая распад гликогена в печени, а норадреналину это менее свойственно.

    Кровоснабжение надпочечника осуществляется из надпочечниковых артерий.

    Иннервация надпочечников представлена главным образом волокнами чревных и блуждающих нервов.

    1   ...   7   8   9   10   11   12   13   14   ...   22


    написать администратору сайта