Главная страница
Навигация по странице:

  • Структурные элементы ядра

  • Клеточный (жизненный) цикл

  • Реакция клеток на внешнее воздействие

  • Тема 6. ОБЩАЯ ЭМБРИОЛОГИЯ Определение и составные части эмбриологии

  • Классификация яйцеклеток

  • Периоды эмбриогенеза

  • Гисто– и органогенез

  • Понятие о генетических основах гисто– и органогенеза

  • Внезародышевые (провизорные) органы

  • гиста методичка ворд. 1. история развития гистологии. Развитие гистологии в россии тема методы исследования в гистологии. Приготовление гистологического препарата тема введение в курс гистологии


    Скачать 479.73 Kb.
    Название1. история развития гистологии. Развитие гистологии в россии тема методы исследования в гистологии. Приготовление гистологического препарата тема введение в курс гистологии
    Анкоргиста методичка ворд.docx
    Дата30.03.2018
    Размер479.73 Kb.
    Формат файлаdocx
    Имя файлагиста методичка ворд.docx
    ТипДокументы
    #17410
    страница2 из 22
    1   2   3   4   5   6   7   8   9   ...   22
    Тема 5. МОРФОЛОГИЯ И ФУНКЦИИ ЯДРА. РЕПРОДУКЦИЯ КЛЕТОК

    В организме человека содержатся только эукариотические (ядерные) типы клеток. Безъядерные структуры (эритроциты, тромбоциты, роговые чешуйки) являются вторичными образованиями, так как они образуются из ядерных клеток в результате их специфической дифференцировки.

    Большинство клеток содержит одно ядро, лишь редко встречаются двухядерные и многоядерные клетки. Форма ядра чаще всего округлая (сферическая) или овальная. В зернистых лейкоцитах ядро подразделяется на сегменты. Локализуется ядро обычно в центре клетки, но в клетках эпителиальной ткани может быть сдвинуто к базальному полюсу.

    Структурные элементы ядра четко выражены только в определенный период клеточного цикла – в интерфазу. В период деления клетки (митоза или мейоза) происходят выраженные изменения структур клеток: одни исчезают, другие значительно преобразуются.

    Структурные элементы ядра

    Структурные элементы ядра, перечисленные ниже, бывают хорошо выражены только в интерфазе:

    1) хроматин;

    2) ядрышко;

    3) кариоплазма;

    4) кариолемма.

    Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл толщиной 20 – 25 км, которые могут располагаться в ядре рыхло или компактно.

    На этом основании можно выделить эухроматин – рыхлый (или деконденсированный) хроматин, слабо окрашиваемый основными красителями, и гетерохроматин – компактный (или конденсированный) хроматин, хорошо окрашиваемый основными красителями.

    При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы. После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл, и хромосомы снова преобразуются в хроматин. Таким образом, хроматин и хромосомы являются различными состояниями одного и того же вещества.

    По химическому строению хроматин состоит из:

    1) дезоксирибонуклеиновой кислоты (ДНК) – 40%;

    2) белков – около 60%;

    3) рибонуклеиновой кислоты (РНК) – 1%.

    Ядерные белки представлены двумя формами:

    1) щелочными (гистоновыми) белками – 80 – 85%;

    2) кислыми белками – 15 – 20%.

    Гистоновые белки связаны с ДНК и образуют дезоксинуклеопротеид, представляющий собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии. На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК на различные РНК, с помощью чего в последующем происходит синтез белковых молекул. Процессы траскрипции в ядре осуществляются только на свободных хромосомных фибриллах, т. е. на эухроматине. В конденсированном хроматине эти процессы не осуществляются, поэтому гетерохроматин называют неактивным хроматином.

    Соотношение эухроматина и гетерохроматина является показателем синтетической активности клетки. На хроматиновых фибриллах в S-периоде интерфазы осуществляется редупликация ДНК. Эти процессы могут протекать также и в гетерохроматине, но значительно дольше.

    Ядрышко – сферическое образование (1 – 5 мкм в диаметре), хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4 и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены. Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе, в определенных участках некоторых хромосом – ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК. В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединицы рибосомы.

    Микроскопически в ядрышке различают:

    1) фибриллярный компонент (локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП));

    2) гранулярный компонент (локализуется в периферической части ядрышка и представляет собой скопление субъединиц рибосом).

    В профазе митоза, когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединицы рибосом прекращаются, ядрышко исчезает. По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом, появляется ядрышко.

    Кариоплазма (нуклеоплазма или ядерный сок), состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Под световым микроскопом кариоплазма бесструктурна, однако при электронной микроскопии в ней можно обнаружить мелкие гранулы (15 нм), состоящие из рибонуклеопротеидов. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющими расщепление углеводов с образованием АТФ.

    Негистоновые белки (кислые) образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создании внутренней среды.

    При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.

    Кариолемма – ядерная оболочка, которая отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.

    Кариолемма состоит из двух билипидных мембран, внешней и внутренней ядерных мембран, разделенных перинуклеарным пространством шириной 20 – 100 нм. В кариолемме имеются поры диаметром 80 – 90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым. Просвет поры закрывается специальным структурным образованием – комплексом поры, который состоит из фибриллярного и гранулярного компонентов. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в 3 ряда. От каждой гранулы отходят фибриллы и соединяются в центральной грануле, располагающейся в центре поры. Комплекс поры играет роль диафрагмы, регулирующей ее проницаемость. Размеры поры стабильные для данного типа клетки, но число пор может меняться при ее дифференцировке. В ядрах сперматозоидов поры отсутствуют. На наружной поверхности ядерной мембраны могут локализоваться прикрепленные рибосомы. Кроме того, наружная ядерная мембрана может продолжаться в каналы ЭПС.

    Функции ядер соматических клеток:

    1) хранение генетической информации, закодированной в молекулах ДНК;

    2) репарация (восстановление) молекул ДНК после их повреждения с помощью специальных репаративных ферментов;

    3) редупликация (удвоение) ДНК в синтетическом периоде интерфазы;

    4) передача генетической информации дочерним клеткам во время митоза;

    5) реализация генетической информации, закодированной в ДНК, для синтеза белка и небелковых молекул: образование аппарата белкового синтеза (информационной, рибосомальной и транспортных РНК).

    Функции ядер половых клеток:

    1) хранение генетической информации;

    2) передача генетической информации при слиянии женских и мужских половых клеток.
    Клеточный (жизненный) цикл

    Клеточный (или жизненный) цикл клетки – время существования клетки от деления до следующего деления или от деления до смерти. Для разных типов клеток клеточный цикл различен.

    В организме млекопитающих и человека различают следующие типы клеток, локализующиеся в разных тканях и органах:

    1) часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки);

    2) редко делящиеся клетки (клетки печени – гепатоциты);

    3) неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и др.).

    Жизненный цикл у этих клеточных типов различен.

    Жизненный цикл у часто делящихся клеток – время их существования от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом.

    Такой клеточный цикл подразделяется на два основных периода:

    1) митоз (или период деления);

    2) интерфазу (промежуток жизни клетки между двумя делениями).

    Выделяют два основных способа размножения (репродукции) клеток.

    1. Митоз (кариокенез) – непрямое деление клеток, присущее в основном соматическим клеткам.

    2. Мейоз (редукционное деление) характерен только для половых клеток.

    Имеются описания и третьего способа деления клеток – амитоза (или прямого деления), которое осуществляется путем перетяжки ядра и цитоплазмы с образованием двух дочерних клеток или одной двухядерной. Однако в настоящее время считают, что амитоз характерен для старых и дегенерирующих клеток и является отражением патологии клетки.

    Указанные два способа деления клеток подразделяются на фазы или периоды.

    Митоз подразделяется на четыре фазы:

    1) профазу;

    2) метафазу;

    3) анафазу;

    4) телофазу.

    Профаза характеризуется морфологическими изменениями ядра и цитоплазмы.

    В ядре происходят следующие преобразования:

    1) конденсация хроматина и образование хромосом, состоящих из двух хроматид;

    2) исчезновение ядрышка;

    3) распад кариолеммы на отдельные пузырьки.

    В цитоплазме происходят следующие изменения:

    1) редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки;

    2) формирование из микротрубочек веретена деления;

    3) редукция зернистой ЭПС и также уменьшение числа свободных и прикрепленных рибосом.

    В метафазе происходит следующее:

    1) образование метафазной пластинки (или материнской звезды);

    2) неполное обособление сестринских хроматид друг от друга.

    Для анафазы характерно:

    1) полное расхождение хроматид и образование двух равноценных дипольных наборов хромосом;

    2) расхождение хромосомных наборов к полюсам митотического веретена и расхождение самих полюсов.

    Для телофазы характерны:

    1) деконденсация хромосом каждого хромосомного набора;

    2) формирование из пузырьков ядерной оболочки;

    3) цитотомия, (перетяжка двухядерной клетки на две дочерние самостоятельные клетки);

    4) появление ядрышек в дочерних клетках.

    Интерфазу подразделяют на три периода:

    1) I – J1 (или пресинтетический период);

    2) II – S (или синтетический);

    3) III – J2 (или постсинтетический период).

    В пресинтетическом периоде в клетке происходят следующие процессы:

    1) усиленное формирование синтетического аппарата клетки – увеличение числа рибосом и различных видов РНК (транспортной, информационной, рибосомальной);

    2) усиление синтеза белка, необходимого для роста клетки;

    3) подготовка клетки к синтетическому периоду – синтез ферментов, необходимых для образования новых молекул ДНК.

    Для синтетического периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки.

    Постсинтетический период характеризуется усиленным синтезом информационной РНК и всех клеточных белков, особенно тубулинов, необходимых для формирования веретена деления.

    Клетки некоторых тканей (например, гепатоциты) по выходе из митоза вступают в так называемый J0-период, во время которого они выполняют свои многочисленные функции в течение ряда лет, при этом не вступая в синтетический период. Только при определенных обстоятельствах (при повреждении или удалении части печени) они вступают в нормальный клеточный цикл (или в синтетический период), синтезируя ДНК, а затем митотически делятся. Жизненный цикл таких редко делящихся клеток можно представить следующим образом:

    1) митоз;

    2) J1-период;

    3) J0-период;

    4) S-период;

    5) J2-период.

    Большинство клеток нервной ткани, особенно нейроны центральной нервной системы, по выходе из митоза еще в эмбриональном периоде в дальнейшем не делятся.

    Жизненный цикл таких клеток состоит из следующих периодов:

    1) митоза – I период;

    2) роста – II период;

    3) длительного функционирования – III период;

    4) старения – IV период;

    5) смерти – V период.

    На протяжении длительного жизненного цикла такие клетки постоянно регенерируют по внутриклеточному типу: белковые и липидные молекулы, входящие в состав разнообразных клеточных структур, постепенно заменяются новыми, т. е. клетки постепенно обновляются. На протяжении жизненного цикла в цитоплазме неделящихся клеток накапливаются различные, прежде всего липидные включения, в частности липофусцин, рассматриваемый в настоящее время как пигмент старения.

    Мейоз – способ деления клеток, при котором происходит уменьшение числа хромосом в дочерних клетках в 2 раза, характерен для половых клеток. В данном способе деления отсутствует редупликация ДНК.

    Кроме митоза и мейоза, выделяется также эндорепродукция, не приводящая к увеличению количества клеток, но способствующая увеличению количества работающих структур и усилению функциональной способности клетки.

    Для данного способа характерно, что после митоза клетки сначала вступают в J1-, а затем в S-период. Однако такие клетки после удвоения ДНК не вступают в J2-период, а затем в митоз. В результате этого количество ДНК становится увеличенным вдвое – клетка превращается в полиплоидную. Полиплоидные клетки могут вновь вступать в S-период, в результате чего они увеличивают свою плоидность.

    В полиплоидных клетках увеличивается размер ядра и цитоплазмы, клетки становятся гипетрофированными. Некоторые полиплоидные клетки после редупликации ДНК вступают в митоз, однако он не заканчивается цитотомией, так как такие клетки становятся двухъядерными.

    Таким образом, при эндорепродукции не происходит увеличения числа клеток, но увеличивается количество ДНК и органелл, следовательно, и функциональная способность полиплоидной клетки.

    Способностью к эндорепродукции обладают не все клетки. Наиболее характерна эндорепродукция для печеночных клеток, особенно с увеличением возраста (например, в старости 80% гепатоцитов человека являются полиплоидными), а также для ацинозных клеток поджелудочной железы и эпителия мочевого пузыря.
    Реакция клеток на внешнее воздействие

    Данная морфология клеток не является стабильной и постоянной. При воздействии на организм различных неблагоприятных факторов внешней среды в строении клетки происходят различные изменения. В зависимости от факторов воздействия изменение клеточных структур происходит неодинаково в клетках разных органов и тканей. При этом изменения клеточных структур могут быть приспособительными и обратимыми или дезадаптивными, необратимыми (патологическими). Определить границу между обратимыми и необратимыми изменениями не всегда возможно, так как адаптивные могут перейти в дезадаптивные при дальнейшем действии фактора внешней среды.

    Изменения в ядре при действии факторов внешней среды:

    1) набухание ядра и смещение его на периферию клетки;

    2) расширение перинуклеарного пространства;

    3) образование инвагинаций кариолеммы (впячивание внутрь ядра отдельных участков его оболочки);

    4) конденсация хроматина;

    5) пикноз (сморщивание ядра и уплотнение (коагуляция хроматина));

    6) кариорексис (распад ядра на фрагменты);

    7) кариолизис (растворение ядра).

    Изменения в цитоплазме:

    1) уплотнение, а затем набухание митохондрий;

    2) дегрануляция зернистой ЭПС (слущивание рибосом и фрагментация канальцев на отдельные вакуоли);

    3) расширение цистерн и распад на вакуоли пластинчатого комплекса Гольджи;

    4) набухание лизосом и активация их гидролаз;

    5) увеличение числа аутофагосом;

    6) распад веретена деления и развитие патологического митоза в процессе митоза.

    Изменения цитоплазмы могут быть обусловлены:

    1) структурными изменениями плазмолеммы, что приводит к усилению ее проницаемости и гидратации гиалоплазмы;

    2) нарушением обмена веществ, что приводит к снижению содержания АТФ;

    3) снижением расщепления или увеличением синтеза включений (гликогена, липидов) и их избыточном накоплением.

    После устранения неблагоприятных факторов внешней среды адаптивные изменения структур исчезают и морфология клетки полностью восстанавливается. При развитии неадаптивных изменений даже после устранения действия неблагоприятных факторов внешней среды изменения продолжают нарастать, и клетка погибает.

    Тема 6. ОБЩАЯ ЭМБРИОЛОГИЯ

    Определение и составные части эмбриологии

    Эмбриология – наука о закономерностях развития животных организмов от момента оплодотворения до рождения (или вылупливания на яйца). Следовательно, эмбриология изучает внутриутробный период развития организма, т. е. часть онтогенеза.

    Онтогенез – развитие организма от оплодотворения до смерти, подразделяется на два периода:

    1) эмбриональный (эмбриогенез);

    2) постэмбриональный (постнатальный).

    Развитию любого организма предшествует прогенез.

    Прогенез включает в себя:

    1) гаметогенез – образование половых клеток (сперматогенез и овогенез);

    2) оплодотворение.
    Классификация яйцеклеток

    В цитоплазме большинства яйцеклеток содержатся включения – лецитин и желток, содержание и распределение которых значительно отличаются у различных живых организмов.

    По содержанию лецитина можно выделить:

    1) алецитарные яйцеклетки (безжелтковые). К этой группе относятся яйцеклетки гельминтов;

    2) олиголецитарные (маложелтковые). Характерно для яйцеклетки ланцетника;

    3) полилецитарные (многожелтковые). Свойственно яйцеклеткам некоторых птиц и рыб.

    По распределению лецитина в цитоплазме выделяют:

    1) изолецитарные яйцеклетки. Лецитин распределяется в цитоплазме равномерно, что характерно для олиголецитарных яйцеклеток;

    2) телолецитарные. Желток концентрируется на одном из полюсов яйцеклетки. Среди телолецитарных яйцеклеток выделяют умеренно телолецитарные (характерны для амфибий), резко телолецитарные (бывают у рыбы и птицы) и центролецитарные (у них желток локализуется в центре, что характерно для насекомых).

    Предпосылкой онтогенеза является взаимодействие мужских и женских половых клеток, при этом происходит оплодотворение – процесс слияния женской и мужской половых клеток (сингамия), в результате которого образуется зигота.

    Оплодотворение может быть внешним (у рыб и амфибий), при этом мужские и женские половые клетки выходят во внешнюю среду, где и происходит их слияние, и внутренним – (у птиц и млекопитающих), при этом сперматозоиды поступают в половые пути женского организма, в котором и происходит оплодотворение.

    Внутреннее оплодотворение, в отличие от внешнего, представляет собой сложный многофазный процесс. После оплодотворения образуется зигота, развитие которой продолжается при внешнем оплодотворении в воде, у птиц – в яйце, а у млекопитающих и человека – в материнском организме (матке).
    Периоды эмбриогенеза

    Эмбриогенез по характеру процессов, происходящих в зародыше, подразделяется на три периода:

    1) период дробления;

    2) период гаструляции;

    3) период гистогенеза (образования тканей), органогенеза (образования органов), системогенеза (образования функциональных систем организма).

    Дробление. Продолжительность жизни нового организма в виде одной клетки (зиготы) продолжается у разных животных от нескольких минут до нескольких часов и даже дней, а затем начинается дробление. Дробление – процесс митотического деления зиготы на дочерние клетки (бластомеры). Дробление отличается от обычного митотического деления следующими особенностями:

    1) бластомеры не достигают исходных размеров зиготы;

    2) бластомеры не расходятся, хотя и представляют собой самостоятельные клетки.

    Различают следующие типы дробления:

    1) полное, неполное;

    2) равномерное, неравномерное;

    3) синхронное, асинхронное.

    Яйцеклетки и образующиеся после их оплодотворения зиготы, содержащие небольшое количество лецитина (олиголецитальные), равномерно распространенного в цитоплазме (изолецитальные), делятся полностью на две дочерние клетки (бластомеры) равной величины, которые затем одновременно (синхронно) делятся снова на бластомеры. Такой тип дробления является полным, равномерным и синхронным.

    Яйцеклетки и зиготы, содержащие умеренное количество желтка, также дробятся полностью, но образующиеся бластомеры имеют разную величину и дробятся неодновременно – дробление полное, неравномерное, асинхронное.

    В результате дробления образуется вначале скопление бластомеров, и зародыш в таком виде носит название морулы. Затем между бластомерами накапливается жидкость, которая отодвигает бластомеры на периферию, а в центре образуется полость, заполненная жидкостью. В этой стадии развития зародыш носит название бластулы.

    Бластула состоит из:

    1) бластодермы – оболочки из бластомеров;

    2) бластоцели – полости, заполненной жидкостью.

    Бластула человека – бластоциста. После образования бластулы начинается второй этап эмбриогенеза – гаструляция.

    Гаструляция – процесс образования зародышевых листков, образующихся посредством размножения и перемещения клеток. Процесс гаструляции у разных животных протекает неодинаково. Различают следующие способы гаструляции:

    1) деламинацию (расщепление скопления бластомеров на пластинки);

    2) иммиграцию (перемещение клеток внутрь развивающегося зародыша);

    3) инвагинацию (впячивание пласта клеток внутрь зародыша);

    4) эпиболию (обрастание медленно делящихся бластомеров быстро делящимися с образованием наружного пласта клеток).

    В результате гаструляции в зародыше любого вида животного образуются три зародышевых листка:

    1) эктодерма (наружный зародышевый листок);

    2) энтодерма (внутренний зародышевый листок);

    3) мезодерма (средний зародышевый листок).

    Каждый зародышевый листок представляет собой обособленный пласт клеток. Между листками вначале имеются щелевидные пространства, в которые вскоре мигрируют отростчатые клетки, образующие в совокупности зародышевую мезенхиму (некоторые авторы рассматривают ее как четвертый зародышевый листок).

    Зародышевая мезенхима образуется путем выселения клеток из всех трех зародышевых листков, главным образом из мезодермы. Зародыш, состоящий из трех зародышевых листков и мезенхимы, носит название гаструлы. Процесс гаструляции у зародышей разных животных существенно отличается как по способам, так и по времени. В образующихся после гаструляции зародышевых листках и мезенхиме содержатся презумптивные (предположительные) зачатки тканей. После этого начинается третий этап эмбриогенеза – гисто– и органогенез.
    Гисто– и органогенез (или дифференцировка зародышевых листков) представляет собой процесс превращения зачатков тканей в ткани и органы, а затем и формирование функциональных систем организма.

    В основе гисто– и органогенеза лежат следующие процессы: митотическое деление (пролиферация), индукция, детерминация, рост, миграция и дифференцировка клеток. В результате этих процессов вначале образуются осевые зачатки комплексов органов (хорда, нервная трубка, кишечная трубка, мезодермальные комплексы). Одновременно постепенно формируются различные ткани, а из сочетания тканей закладываются и развиваются анатомические органы, объединяющиеся в функциональные системы – пищеварительную, дыхательную, половую и др. На начальном этапе гисто– и органогенеза зародыш носит название эмбриона, который в дальнейшем превращается в плод.

    В настоящее время окончательно не установлено, каким образом из одной клетки (зиготы), а в дальнейшем из одинаковых зародышевых листков образуются совершенно различные по морфологии и функции клетки, а из них – ткани (из эктодермы образуются эпителиальные ткани, роговые чешуйки, нервные клетки и клетки глии). Предположительно в данных превращениях играют ведущую роль генетические механизмы.
    Понятие о генетических основах гисто– и органогенеза

    После оплодотворения яйцеклетки сперматозоидом образуются зигота. Она содержит генетический материал, состоящий из материнских и отцовских генов, которые затем передаются при делении дочерним клеткам. Сумма всех генов зиготы и образующихся из нее клеток составляет геном, характерный только для данного вида организма, а особенности сочетания материнских и отцовских генов у данной особи составляют ее генотип. Следовательно, любая клетка, образующаяся из зиготы, содержит одинаковый по количеству и качеству генетический материал, т. е. одинаковые геном и генотип (исключением являются только половые клетки, они содержат половинный набор генома).

    В процессе гаструляции и после образования зародышевых листков клетки, расположенные в разных листках или в различных участках одного зародышевого листка, оказывают влияние друг на друга. Такое влияние называют индукцией. Индукция осуществляется путем выделения химических веществ (белков), но существуют и физические методы индукции. Индукция оказывает влияние прежде всего на геном клетки. В результате индукции некоторые гены клеточного генома блокируются, т. е. становятся нерабочими, с них не производится транскрипция различных молекул РНК, следовательно, не осуществляется и синтез белка. В результате индукции одни гены оказываются блокированными, другие свободными – рабочими. Сумма свободных генов данной клетки называется ее эпигеном. Сам процесс формирования эпигенома, т. е. взаимодействия индукции и генома, носит название детерминации. После сформирования эпигенома клетка становится детерминированной, т. е. запрограммированной к развитию в определенном направлении.

    Сумма клеток, расположенных в определенном участке зародышевого листка и имеющих одинаковый эпигеном, представляет собой презумптивные зачатки определенной ткани, так как все эти клетки будут дифференцироваться в одном направлении и войдут в состав этой ткани.

    Процесс детерминации клеток в разных участках зародышевых листков осуществляется в разное время и может протекать в несколько стадий. Сформированный эпигеном является устойчивым и после митотического деления передается дочерним клеткам.

    После детерминации клеток, т. е. после окончательного формирования эпигенома, начинается дифференцировка – процесс морфологической, биохимической и функциональной специализации клеток.

    Этот процесс обеспечивается транскрипцией с активных генов, определенных РНК, а затем осуществляется синтез определенных белков и небелковых веществ, которые и определяют морфологическую, биохимическую и функциональную специализацию клеток. Некоторые клетки (например, фибробласты) формируют межклеточное вещество.

    Таким образом, формирование из клеток, содержащих одинаковый геном и генотип, разнообразных по строению и функциям клеток можно объяснить процессом индукции и формированием клеток с различным эпигеномом, которые затем дифференцируются в клетки различных популяций.
    Внезародышевые (провизорные) органы

    Часть бластомеров и клеток после дробления зиготы идет на образование органов, способствующих развитию зародыша и плода. Такие органы и называются внезародышевыми.

    После рождения некоторые внезародышевые органы отторгаются, другие на последних этапах эмбриогенеза подвергаются обратному развитию или перестраиваются. У разных животных развивается неодинаковое количество провизорных органов, отличающихся по строению и по выполняемым функциям.

    У млекопитающих, в том числе и у человека, развиваются четыре внезародышевых органа:

    1) хорион;

    2) амнион;

    3) желточный мешок;

    4) аллантоис.

    Хорион (или ворсинчатая оболочка) выполняет защитную и трофическую функции. Часть хориона (ворсинчатый хорион) внедряется в слизистую оболочку матки и входит в состав плаценты, которую иногда рассматривают как самостоятельный орган.

    Амнион (или водная оболочка) образуется только у наземных животных. Клетки амниона продуцируют амниотическую жидкость (околоплодные воды), в которой и развивается эмбрион, а затем – плод.

    После рождения ребенка хориальная и амниотическая оболочки отторгаются.

    Желточный мешок развивается в наибольшей степени у зародышей, образующихся из полилецитальных клеток, и потому содержит много желтка, откуда и происходит его название. Желточный меток выполняет следующие функции:

    1) трофическую (за счет трофического включения (желтка) обеспечивается питание зародыша, особенно развивающегося в яйце, на более поздних стадиях развития для доставки трофического материала к зародышу формируется желточный круг кровообращения);

    2) кроветворную (в стенке желточного мешка (в мезенхиме) образуются первые клетки крови, которые затем мигрируют в кроветворные органы зародыша);

    3) гонобластическую (в стенке желточного мешка (в энтодерме) образуются первичные половые клетки (гонобласты), которые затем мигрируют в закладки половых желез зародыша).

    Аллантоис – слепое выпячивание каудального конца кишечной трубки, окруженное внезародышевой мезенхимой. У животных, развивающихся в яйце, аллантоис достигает большого развития и выполняет функцию резервуара для продуктов обмена зародыша (главным образом мочевины). Именно поэтому аллантоис нередко называю мочевым мешком.

    У млекопитающих необходимость в накоплении продуктов обмена отсутствует, так как они поступают через маточно-плацентарный кровоток в организм матери и выводятся ее экскреторными органами. Поэтому у таких животных и человека аллантоис развит слабо и выполняет другие функции: в его стенке развиваются пупочные сосуды, которые разветвляются в плаценте и благодаря которым формируется плацентарный круг кровообращения.

    1   2   3   4   5   6   7   8   9   ...   22


    написать администратору сайта