1. Кислотноосновные свойства органических соединений, образование солей. Факторы, влияющие на кислотность и основность
Скачать 0.79 Mb.
|
3. Выше 600 °С взаимодействует с парами воды, давая Сr2О3; азотом - Cr2N, CrN; углеродом - Сr23С6, Сr7С3, Сr3С2; серой - Cr2S3. При сплавлении с бором образует борид СrВ, с кремнием - силициды Cr3Si, Cr2Si3, CrSi2. Со многими металлами Хром дает сплавы. Взаимодействие с кислородом протекает сначала довольно активно, затем резко замедляется благодаря образованию на поверхности металла оксидной пленки. При 1200 °С пленка разрушается и окисление снова идет быстро. Хром загорается в кислороде при 2000 °С с образованием темно-зеленого оксида Хрома (III) Сr2О3. Помимо оксида (III), известны других соединения с кислородом, например CrO, СrО3, получаемые косвенным путем. Хром легко реагирует с разбавленными растворами соляной и серной кислот с образованием хлорида и сульфата Хрома и выделением водорода; царская водка и азотная кислота пассивируют Хром. С увеличением степени окисления возрастают кислотные и окислительные свойства Хром Производные Сr2+ - очень сильные восстановители. Ион Сr2+ образуется на первой стадии растворения Хрома в кислотах или при восстановлении Сr3+ в кислом растворе цинком. Гидрат закиси Сr(ОН)2 при обезвоживании переходит в Сr2О3. Соединения Сr3+ устойчивы на воздухе. Могут быть и восстановителями и окислителями. Сr3+ можно восстановить в кислом растворе цинком до Сr2+ или окислить в щелочном растворе до СrО42- бромом и других окислителями. Гидрооксид Сr(ОН)3 (вернее Сr2О3·nН2О) - амфотерное соединение, образующее соли с катионом Сr3+ или соли хромистой кислоты НСrО2 - хромиты (например, КСrО2, NaCrO2). Соединения Сr6+: хромовый ангидрид СrО3, хромовые кислоты и их соли, среди которых наиболее важны хроматы и дихроматы - сильные окислители. Хром образует большое число солей с кислородсодержащими кислотами. Известны комплексные соединения Хрома; особенно многочисленны комплексные соединения Сr3+, в которых Хром имеет координационное число 6. Существует значительное число переоксидных соединений Хрома. 3. 4. Хром имеет большое значение в метаболизме углеводов и жиров, а также участвует в процессе синтеза инсулина. Элемент способствует нормальному формированию и росту детского организма. Предполагается, что дефицит хрома может вызывать развитие атеросклероза и сахарного диабета, артериальной гипертензии. При снижении содержания хрома в организме человека могут возникать раздражительность, жажда, нередко отмечается снижение памяти. В тяжелых случаях могут появляться спутанность сознания и другие признаки нарушения функций ЦНС. Основные пищевые источники хрома: пивные дрожжи, мясные продукты, птица, яичный желток, печенка, проросшие зерна пшеницы и крупа из необрушенного зерна, сыр, устрицы, крабы, кукурузное масло, моллюски. Некоторые спиртные напитки также содержат хром. Fe 1. VIII гр., побочная подгр., 4 период. № 26 1s22s22p63s23p63d64s2 2. Блестящий серебристо-белый металл. Оно пластично, легко куется как в холодном, так и нагретом состоянии, поддается прокатке, штамповке и волочению. Способность растворять углерод и других элементы служит основой для получения разнообразных железных сплавов. Физические свойства Железа зависят от его чистоты. В промышленных железных материалах Железу, как правило, сопутствуют примеси углерода, азота, кислорода, водорода, серы, фосфора. Даже при очень малых концентрациях эти примеси сильно изменяют свойства металла. Так, сера вызывает так называемых красноломкость, фосфор (даже 10-2% Р) - хладноломкость; углерод и азот уменьшают пластичность, а водород увеличивает хрупкость Железа (т. н. водородная хрупкость). Снижение содержания примесей до 10-7 - 10-9% приводит к существенным изменениям свойств металла, в частности к повышению пластичности. Железо проявляет переменную валентность (наиболее устойчивы соединения 2- и 3-валентного Железа). С кислородом Железо образует оксид (II) FeO, оксид (III) Fe2O3 и оксид (II,III) Fe3O4 (соединение FeO c Fe2O3, имеющее структуру шпинели). Во влажном воздухе при обычной температуре Железо покрывается рыхлой ржавчиной (Fe2O3·nH2O). Вследствие своей пористости ржавчина не препятствует доступу кислорода и влаги к металлу и поэтому не предохраняет его от дальнейшего окисления. В результате различных видов коррозии ежегодно теряются миллионы тонн Железа. При нагревании Железа в сухом воздухе выше 200 °С оно покрывается тончайшей оксидной пленкой, которая защищает металл от коррозии при обычных температурах; это лежит в основе технического метода защиты Железа - воронения. При нагревании в водяном паре Железо окисляется с образованием Fe3O4 (ниже 570 °С) или FeO (выше 570 °С) и выделением водорода. Fe(OH)2 образуется в виде белого осадка при действии едких щелочей или аммиака на водные растворы солей Fe2+ в атмосфере водорода или азота. При соприкосновении с воздухом Fe(OH)2 сперва зеленеет, затем чернеет и наконец быстро переходит в красно-бурый гидрооксид Fe(OH)3. Оксид FeO проявляет основные свойства. Оксид Fe2O3 амфотерен и обладает слабо выраженной кислотной функцией; реагируя с более основными оксидами (например, с MgO, она образует ферриты - соединения типа Fe2O3·nMeO, имеющие ферромагнитные свойства и широко применяющиеся в радиоэлектронике. Кислотные свойства выражены и у 6-валентного Железа, существующего в виде ферратов, например K2FeO4, солей не выделенной в свободном состоянии железной кислоты. Железо легко реагирует с галогенами и галогеноводородами, давая соли, например хлориды FeCl2 и FeCl3. При нагревании Железа с серой образуются сульфиды FeS и FeS2. Карбиды Железа - Fe3C (цементит) и Fe2C (е-карбид) - выпадают из твердых растворов углерода в Железе при охлаждении. Fe3C выделяется также из растворов углерода в жидком Железе при высоких концентрациях С. Азот, подобно углероду, дает с Железом твердые растворы внедрения; из них выделяются нитриды Fe4N и Fe2N. С водородом Железо дает лишь малоустойчивые гидриды, состав которых точно не установлен. При нагревании Железо энергично реагирует с кремнием и фосфором, образуя силициды (например, Fe3Si и фосфиды (например, Fe3P). 3. 4. Железо является важнейшим микроэлементом, который необходим для нормальной жизнедеятельности организма. Оно играет очень большую роль в окислительном и восстановительном процессах. Железо входит в состав гемоглобина эритроцитов, миоглобина и многих ферментов, участвует в процессах кроветворения. Следовательно, железо обеспечивает обратимое связывание кислорода эритроцитами и его транспорт во все органы и ткани организма человека. Железо играет важную роль в поддержании достаточного уровня иммунной резистентности, адекватное его содержание в организме способствует полноценному функционированию факторов неспецифической защиты, клеточного и местного иммунитета. Достаточное количество железа в организме необходимо для полноценных фагоцитоза и активности естественных киллеров, синтеза лизоцима, интерферона, обеспечивающих хорошую бактерицидную способность сыворотки крови. Как правило недостаточность железа проявляется развитием анемии, сопровождающейся общей мышечной слабостью, нарушением вкуса и обоняния. Ухудшается состояние ногтей и волос. Ослабляется иммунитет, ухудшается сон. Основные источники железа это мясо и рыба. 43. Химия элементов p-блока. Электронные структуры атомов и катионов. Изменение в группах величины радиусов атомов и ионов, потенциала ионизации. Сравнительные свойства простых веществ. Закономерности в проявлении устойчивых степеней окисления. Особенности реакций комплексообразования. Протолитические свойства соединений р-блока. Характеристика отдельных элементов р-блока (бор, алюминий, углерод, свинец, азот, фосфор, кислород, сера, хлор) по плану. Элементы у которых происходит достройка р-подуровня внешнего валентного уровня называют р-элементами. Электронное строение валентного уровня ns2p1-6. Валентными являются электроны s- и р-подуровней. В периодах слева направо возрастает заряд ядер, влияние которого превалирует над увеличением сил взаимного отталкивания между электронами. Поэтому потенциал ионизации, сродство к электрону, а, следовательно, и акцепторная способность и неметаллические свойства в периодах увеличиваются. Все элементы, лежащие на диагонали Вr – At и выше являются неметаллами и образуют только ковалентные соединения и анионы. Все остальные р-элементы (за исключением индия, талия, полония, висмута которые проявляют металлические свойства) являются амфотерными элементами и образуют как катионы, так и анионы, причем и те, и другие сильно гидролизуется. Большинство р-элементов-неметаллов – биогенные (исключение – благородные газы, теллур и астат). Из р-элементов - металлов – к биогенным относят только алюминий. Различия в свойствах соседних элементов, как внутри; так и по периоду: выражены значительно сильнее, чем у s-элементов. р-Элементы второго периода – азот, кислород, фтор обладают ярко выраженной способностью участвовать в образовании водородных связей. Элементы третьего и последующего периодов эту способность теряют. Их сходство заключается только в строении внешних электронных оболочек и тех валентных состояний, которые возникают за счет неспаренных электронов в невозбужденных атомах. Бор, углерод и особенно азот, сильно отличаются от остальных элементов своих групп (наличие d- и f-подуровней). Все р-элементы и в особенности р-элементы второго и третьего периодов (С, N, Р, О, S, Si, Cl) образуют многочисленные соединения между собой и с s-, d- и f-элементами. Большинство известных на Земле соединений – это соединения р-элементов. Пять главных (макробиогенных) р-элементов жизни – О, Р, С, N и S – это основной строительный материал, из которого сложены молекулы белков, жиров, углеводов и нуклеиновых кислот. Из низкомолекулярных соединений р-элементов наибольшее значение имеют оксоанионы: СО32-, НСО3-, С2O42-, СНзСОО-, РО43-, НРO42-, H2PO4-, SO42- и галогенид-ионы. р-Элементы имеют много валентных электронов, обладающих различной энергией. Поэтому в соединениях проявляют различную степень окисления. Например, углерод проявляет различные степени окисления от – 4 до +4. Азот – от -3 до +5, хлор – от -1 до +7. В процессе реакции р-элемент может отдавать и принимать электроны, выступая соответственно восстановителем или окислителем в зависимости от свойств элемента с которым вступает во взаимодействие. Это порождает широкий ассортимент образуемых ими соединений. Взаимопереход атомов р-элементов различных стпеней окисления, в том числе и за счет метаболических окислительно-восстановительвых процессов (например, окисление спиртовой группы в их альдегидную и далее в карбоксильную и так далее) вызывает богатство их химических превращений. 44. Характеристика отдельных элементов и их соединений дается по следующему плану: 1) Положение элемента в ПС. Электронная и электронно-графическая формула элемента. 2) Свойства элемента как простого вещества физические: цвет, запах, агрегатное состояние, отношение к растворителям; химические: взаимодействие с кислородом, водородом, галогенами, кислотами, щелочами и т.д.). Важнейшие соединения соединения элемента и свойства. 3) Окислительно-восстановительные свойства и наиболее устойчивые степени окисления. Особенности реакций комплексообразования. Образование нерастворимых соединений. 4) медико-биологическое значение элемента и его соединений, соединения элемента в качестве лекарственных средств. |