Главная страница
Навигация по странице:

  • 69. Орнитиновый цикл

  • 70. Биологические механизмы окисления нуклеотидов

  • 71. Строение молекул ДНК

  • 72. Биохимические механизмы синтеза ДНК

  • 73. Репликация и репарация

  • 74. строение РНК. Виды Рнк. Их роль в метаболизме

  • 75. Биохимические механизмы синтеза РНК

  • 76. Биохимические механизмы синтеза белка

  • ответы. биохимия.. 1 Классификация и строение углеводов. Функции углеводов различных классов


    Скачать 468 Kb.
    Название1 Классификация и строение углеводов. Функции углеводов различных классов
    Анкорответы. биохимия..doc
    Дата18.08.2017
    Размер468 Kb.
    Формат файлаdoc
    Имя файлаответы. биохимия..doc
    ТипДокументы
    #8411
    страница7 из 7
    1   2   3   4   5   6   7

    68. Декарбоксилирование аминокислот. Биологическая роль продуктов декаброксилирования

    Процесс отщепления карбоксильной группы аминокислот в виде СО2 получил название декарбоксилирования.

    Несмотря на ограниченный круг аминокислот и их производных, подвергающихся декарбоксилированию в животных тканях, образующиеся продукты реакции – биогенные амины – оказывают сильное фармакологическое действие на множество физиологических функций человека и животных.

    Механизм реакции декарбоксилирования аминокислот сводится к образованию ПФ-субстратного комплекса.

    Для тканей животных характерно a-декарбоксилирование, при котором от аминокислот отщепляется карбоксильная группа, расположенная по соседству с a-углеродным атомом: R-CH (NH2)-COOH  R-CH2-NH2 + CO2. Продуктами реакции являются СО2 и биогенные амины.
    Реакции декарбоксилирования в отличие от других процессов промежуточного обмена аминокислот являются необратимыми. Они катализируются специфическими ферментами – декарбоксилазами аминокислот, простетическая группа которых представлена пиридоксальфосфатом, как и у аминотрансфераз.

    Декарбоксилаза ароматических аминокислот получена в чистом виде, кофермент – ПФ. В больших количествах она содержится в надпочечниках и ЦНС, играет важную роль в регуляции содержания биогенных аминов.

    Образующийся из 5-окситриптофана серотонин оказался высокоактивным биогенным амином сосудосуживающего действия. Серотонин регулирует артериальное давление, температуру тела, дыхание, почечную фильтрацию и является медиатором нервных процессов в ЦНС. Некоторые авторы считают серотонин причастным к развитию аллергии, токсикоза беременных.

    Гистамин образуется при декарбоксилировании гистидина, оказывает широкий спектр биологического действия: вызывает расширение капилляров (обладает сосудорасширяющим действием в отличие от других биогенных аминов), повышение их проницаемости (жидкость из крови выходит в межклеточную среду, что приводит к уменьшению объема крови), понижает АД, стимулирует секруцию желудочного сока и слюны, усиливает секрецию соляной кислоты в желудке; сокращает гладкие мышцы легких, что может вызвать «гистаминовый шок», что проявляется как приступ удушья; участвует в развитии болевых ощущений. Большое количество гистамина образуется в очаге воспаления, что имеет определенный биологический смысл, вызывая расширение сосудов в очаге воспаления, гистамин тем самым ускоряет приток лейкоцитов, способствуя активации защитных сил организма. При повышенной чувствительности к гистамину в клинике используют антигистаминные препараты.

    69. Орнитиновый цикл

    Основным механизмом обезвреживания аммиака в организме является биосинтез мочевины (в основном в печени).Она выводится с мочой в качестве главного конечного продукта белкового, соответственно аминокислотного, обмена. На долю мочевины приходится до 80-85% всего азота мочи. Реакции синтеза мочевины, представлены в виде цикла, получившего название орнитинового цикла мочевинообразования Кребса.

    · На первом этапе синтезируется макроэргическое соединение карбамоилфосфат - это метаболически активная форма аммиака

    · На втором этапе цикла мочевинообразования происходит конденсация карбамоилфосфата и орнитина с образованием цитруллина; реакцию катализирует орнитин-карбамоил-трансфераза:

    -На следующей стадии цитруллин превращается в аргинин в результате двух последовательно протекающих реакций.

    Первая из них, энергозависимая, сводится к конденсации цитруллина и аспаргиновой кислоты с образованием аргининосукцината ( эту реакцию катализирует аргининосукцинат-синтетаза).

    Аргининсукцинат распадается во второй реакции на аргинин и фумарат под действием аргининосукцинат-лиазы.

    На последнем этапе аргинин расщепляется на мочевину и орнитин под действием аргиназы.

    70. Биологические механизмы окисления нуклеотидов

    Нуклеотидами называются соединения, состоящие из азотистого основания, углевода-пентозы и фосфорной кислоты. Примером может служить уридиловая кислота:

    Нуклеотиды поступают в организм в состоянии нуклеопротеидов. Соляная кислота и протеолитический фермент желуд распад до нуклеиновых кислот и белковых частиц. С помощью дополнительных ферм переваривания.

    Панкретический сок содержит рибонуклеазы и дезоксирибонуклеазы, гидролизующие все нуклеинов кислоты до полинуклеотидов. После действует панкреатич ферм полинуклеотидазы кишечника гидролизуют нукл кисл до мононуклеотидов. Далее, под действ нуклеотидаз и фосфатаз происходит гидролиз нуклеотид до нуклеозидов, кот либо всасываются либо под действием нуклеозидаз слизистой кишечника распад до пуринов и пиримидиновых оснований. В просвет кишечника пуриновые основания могут окисляться до мочев кислоты, кот всасывается и выдел с мочей.

    71. Строение молекул ДНК

    Структурно представляет собой полимерное соед-е ,постр-е из дезоксирибонуклеотидов.

    У эукариот как в ядре и в митохондриях. ДНК в пространстве может сущ как одноцепочечной так и двойной спирали. В моделе ДНК имеются 2 комплементарные полинуклеотидные цепи,соед-ые между собой водородными связ-ми. Две нити явл-ся антипараллельными. (ф-ция передачи и хранения насд инф)

    Перед делением клетки происходит удвоение ДНК-реплекация. Происх-т отделение нитей друг от друга, и вдоль каждой осущ сборка комплементарных нитей. Скорость завис-т от числа пар нуклеотидов днк,вход-х в геном.

    72. Биохимические механизмы синтеза ДНК

    1. Реплицируется не одна, а обе цепи ДНК каждой хромосомы.

    2. Обе цепи ДНК реплицируются

    3. ДНК-полимераза представляет собой комплекс основных ферментов репликации. Этот комплекс прикрепляется к ДНК и начинает двигаться вдоль нее. Другой фермент — ДНК-лигаза, который катализирует образование связей между соседними нуклеотидами, используя для этого энергию фосфатных связей.

    4. Дочерние цепи ДНК начинают формироваться одновременно в сотнях участков обеих родительских цепей. Впоследствии концы отдельных сегментов вновь синтезированной ДНК «сшиваются» ферментом ДНК-лигазой.

    5. Каждая вновь синтезированная цепь ДНК остается прикрепленной посредством слабых водородных связей к родительской цепи, используемой в качестве матрицы. Впоследствии обе цепи ДНК вместе скручиваются в спираль.

    6. Каждая цепь ДНК имеет длину около 6 см и состоит из миллионов витков, поэтому раскрутить две цепи без специального механизма было бы невозможно. Это достигается с помощью ферментов, которые регулярно разрезают каждую спираль по всей длине, поворачивают ее фрагменты так, чтобы они могли расплестись, и затем вновь восстанавливают целостность каждой спирали. Так возникают две новые спирали.

    73. Репликация и репарация

    Реплика́ция ДНК — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15—20 различных белков, называемый реплисомой

    Репарация — особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических или химических агентов. Осуществляется специальными ферментными системами клетки. Ряд наследственных болезней (напр., пигментная ксеродерма) связан с нарушениями систем репарации.

    74. строение РНК. Виды Рнк. Их роль в метаболизме

    Рибонуклеи́новая кисло́та (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.

    РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.
    Транспортная РНК(т-РНК). Молекулы т-РНК самые короткие: они состоят всего из 80—100 нуклеотидов.

    Транспортная РНК в основном содержится в цитоплазме клетки. Функция состоит в переносе аминокислот в рибосомы, к месту синтеза белка.

    Из общего содержания РНК клетки на долю т-РНК приходится около 10%. 

    Рибосомная РНК (р-РНК). Это самые крупные РНК в их молекулы входит 3—5 тыс. нуклеотидов. Рибосомная РНК составляет существенную часть структуры рибосомы. Из общего содержания РНК в клетке на долю р-РНК приходится около 90%. 

    Информационная РНК (и-РНК), или матричная (м-РНК). Содержится в ядре и цитоплазме. Функция ее состоит в переносе информации о структуре белка от ДНК к месту синтеза белка в рибосомах. На долю и-РНК приходится примерно 0,5—1% от общего содержания РНК клетки. 
    Все виды РНК синтезируются на ДНК, которая служит своего рода матрицей.
    75. Биохимические механизмы синтеза РНК

    Ядерная РНК синтез-ся из рибонуклеотидов с помощью ДНК-зависимой РНК- полимеразы. РНК обра-ет одноцепочечную нить, кот может сама на себя накручиваться и образ-ть локально двунитчатые участки ( скрепл-ся за счет комплементарных взаимд-й пуринпиримидиновых нуклеотидов ) Передача наслед инф от ДНК из ядра в цитоплазму(для упрощения синтеза белков).

    Синтез РНК в живой клетке проводится ферментом — РНК-полимеразой.

    РНК-зависимая РНК-полимеразы фермент присоединяется к промоторной последовательности. Вторичная структура молекулы матрицы расплетается с помощью хеликазной активности полимеразы. Терминатор транскрипции в исходной молекуле определяет окончание синтеза. Многие молекулы РНК синтезируются в качестве молекул-предшественников, которые подвергаются «редактированию» — удалению ненужных частей с помощью РНК-белковых комплексов. После завершения транскрипции РНК часто подвергается модификациям

    76. Биохимические механизмы синтеза белка

    Трансляция

    -осуществляемый рибосомой синтез белка из аминокислот на матрице информационной (или матричной) РНК (иРНК или мРНК).

    Для осуществления этого процесса в клетках специальные органеллы — рибосомы (большой и малой).

    Функция рибосом заключается в узнавании трёхбуквенных (трехнуклеотидных) кодонов мРНК, сопоставлении им соответствующих антикодонов тРНК, несущих аминокислоты, и присоединении этих аминокислот к растущей белковой цепи. Двигаясь вдоль молекулы мРНК, рибосома синтезирует белок в соответствии с информацией, заложенной в молекуле мРНК. Для узнавания аминокислот в клетке имеются специальные «адаптеры», молекулы транспортной РНК (тРНК). Эти молекулы, имеют участок (антикодон), комплементарный кодону мРНК, а также другой участок, к которому присоединяется аминокислота, соответствующая этому кодону. Присоединение аминокислот к тРНК осуществляется в энерго-зависимой реакции ферментами аминоацил-тРНК-синтетазами, а получившаяся молекула называется аминоацил-тРНК.

    Таким образом, специфичность трансляции определяется взаимодействием между кодоном мРНК и антикодоном тРНК, а также специфичностью аминоацил-тРНК-синтетаз, присоединяющих аминокислоты строго к соответствующим им тРНК .

    Процесс трансляции разделяют на инициацию — узнавание рибосомой стартового кодона и начало синтеза., элонгацию — собственно синтез белка., терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.
    1   2   3   4   5   6   7


    написать администратору сайта