Главная страница
Навигация по странице:

  • 73. Динамика антителообразования. Первичный и вторичный иммунный ответ. Иммунологическая память.

  • 75. Гиперчувствительность немедленного и замедленного типов.

  • 85. Диагностикумы (бактериальные, вирусные, эритроцитарные), полу­чение и использование.

  • 88. Вакцины. Определение. Классификация. Требования, предъявляе­мые к вакцинным препаратам.

  • 89. Живые вакцины. Получение, применение: достоинства и недостатки.

  • 90. Инактивированные, корпускулярные вакцины. Приготовление и при­менение. Достоинства и недостатки.

  • 91. Химические (субклеточные) вакцины. Получение. Преимущества. Применение. Роль адъювантов.

  • 92. Анатоксины, их получение, титрование и практическое применение.

  • Шпора. 1. Место микробиологии и иммунологии в современной медицине


    Скачать 470.5 Kb.
    Название1. Место микробиологии и иммунологии в современной медицине
    АнкорШпора.doc
    Дата26.04.2017
    Размер470.5 Kb.
    Формат файлаdoc
    Имя файлаШпора.doc
    ТипДокументы
    #5634
    КатегорияБиология. Ветеринария. Сельское хозяйство
    страница8 из 10
    1   2   3   4   5   6   7   8   9   10

    IgE. Представляет мономер, в сыворотке крови находится в низких концентрациях. Основная роль- своими Fc- фрагментами прикрепляется к тучным клеткам (мастоцитам) и базофилам и опосредует реакции гиперчувствительности немедленного типа. К IgE относятся “антитела аллергии”- реагины.

    IgD. Мономеры IgD обнаруживают на поверхности развивающихся В- лимфоцитов, в сыворотке находятся в крайне низких концентрациях. Их биологическая роль точно не установлена.


    73. Динамика антителообразования. Первичный и вторичный иммунный ответ. Иммунологическая память.

    Динамика выработки антител. Первичный и вторичный иммунный ответ.

    Первичный ответ- при первичном контакте с возбудителем (антигеном), вторичный- при повторном контакте. Основные отличия:

    - продолжительность скрытого периода (больше- при первичном);

    - скорость нарастания антител (быстрее- при вторичном);

    - количество синтезируемых антител (больше- при повторном контакте);

    - последовательность синтеза антител различных классов (при первичном более длительно преобладают IgM, при вторичном- быстро синтезируются и преобладают IgG- антитела).

    Вторичный иммунный ответ обусловлен формированием клеток иммунной памяти. Пример вторичного иммунного ответа- встреча с возбудителем после вакцинации.

    Роль антител в формировании иммунитета.

    Антитела имеют важное значение в формировании приобретенного постинфекционного и поствакцинального иммунитета.

    1. Связываясь с токсинами, антитела нейтрализуют их, обеспечивая антитоксический иммунитет.

    2. Блокируя рецепторы вирусов, антитела препятствуют адсорбции вирусов на клетках, участвуют в противовирусном иммунитете.

    3. Комплекс антиген- антитело запускает классический путь активации комплемента с его эффекторными функциями (лизис бактерий, опсонизация, воспаление, стимуляция макрофагов).

    4. Антитела принимают участие в опсонизации бактерий, способствуя более эффективному фагоцитозу.

    5. Антитела способствуют выведению из организма (с мочой, желчью) растворимых антигенов в виде циркулирующих иммунных комплексов.

    IgG принадлежит наибольшая роль в антитоксическом иммунитете, IgM- в антимикробном иммунитете (фагоцитоз корпускулярных антигенов), особенно в отношении грамотрицательных бактерий, IgA- в противовирусном иммунитете (нейтрализация вирусов), IgAs- в местном иммунитете слизистых оболочек, IgE- в реакциях гиперчувствительности немедленного типа.


    75. Гиперчувствительность немедленного и замедленного типов.

    Классификация Джелла и Кумбса выделяет 4 основных типа гиперчувствительности в зависимости от преобладающих механизмов, участвующих в их реализации.

    Аллергические реакции гуморального (немедленного) типа обусловлены главным образом функцией антител классов IgG и особенно IgE (реагинов). В них принимают участие тучные клетки, эозинофилы, базофилы, тромбоциты. ГНТ делят на три типа. По классификации Джелла и Кумбса к ГНТ относятся реакции гиперчувствительности 1, 2 и 3 типов, т.е. анафилактическая (атопическая), цитотоксическая и иммунных комплексов.

    ГНТ характеризуется быстрым развитием после контакта с аллергеном (минуты), в ней участвуют антитела.

    Тип 1. Анафилактические реакции - немедленного типа, атопические, реагиновые. Они вызываются взаимодействием поступающих извне аллергенов с антителами класса IgE, фиксированными на поверхности тучных клеток и базофилов. Реакция сопровождается активацией и дегрануляцией клеток- мишеней с высвобождением медиаторов аллергии (главным образом гистамина). Примеры реакций типа 1 - анафилактический шок, атопическая бронхиальная астма, поллиноз.

    Тип 2. Цитотоксические реакции. В них участвуют цитотоксические антитела (IgM и IgG), которые связывают антиген на поверхности клеток, активируют систему комплемента и фагоцитоз, приводят к развитию антитело- зависимого клеточно- опосредованного цитолиза и повреждения тканей. Пример- аутоиммунная гемолитическая анемия.

    Тип 3. Реакции иммунных комплексов. Комплексы антиген- антитела откладываются в тканях (фиксированные иммунные комплексы), активируют систему комплемента, привлекают к месту фиксации иммунных комплексов полиморфноядерные лейкоциты, приводят к развитию воспалительной реакции. Примеры- острый гломерулонефрит, феномен Артюса.

    Гиперчувствительность замедленного типа (ГЗТ) - клеточно- опосредованная гиперчувствительность или гиперчувствительность типа 4, связанная с наличием сенсибилизированных лимфоцитов. Эффекторными клетками являются Т- клетки ГЗТ, имеющие CD4 рецепторы в отличие от CD8+ цитотоксических лимфоцитов. Сенсибилизацию Т- клеток ГЗТ могут вызывать агенты контактной аллергии (гаптены), антигены бактерий, вирусов, грибов, простейших. Близкие механизмы в организме вызывают антигены опухолей в противоопухолевом иммунитете, генетически чужеродные антигены донора- при трансплантационном иммунитете.

    Т- клетки ГЗТ распознают чужеродные антигены и секретируют гамма- интерферон и различные лимфокины, стимулируя цитотоксичность макрофагов, усиливая Т- и В- иммунный ответ, вызывая возникновение воспалительного процесса.

    Исторически ГЗТ выявлялась в кожных аллергических пробах (с туберкулином- туберкулиновая проба), выявляемых через 24 - 48 часов после внутрикожного введения антигена. Развитием ГЗТ на вводимый антиген отвечают только организмы с предшествующей сенсибилизацией этим антигеном.

    Классический пример инфекционной ГЗТ - образование инфекционной гранулемы (при бруцеллезе, туберкулезе, брюшном тифе и др.). Гистологически ГЗТ характеризуется инфильтрацией очага вначале нейтрофилами, затем лимфоцитами и макрофагами. Сенсибилизированные Т- клетки ГЗТ распознают гомологичные эпитопы, представленные на мембране дендритных клеток, а также секретируют медиаторы, активирующие макрофаги и привлекающие в очаг другие клетки воспаления. Активированные макрофаги и другие участвующие в ГЗТ клетки выделяют ряд биологически активных веществ, вызывающих воспаление и уничтожающих бактерии, опухолевые и другие чужеродные клетки - цитокины (ИЛ-1, ИЛ-6, альфа- фактор некроза опухолей), активные метаболиты кислорода, протеазы, лизоцим и лактоферрин.

    85. Диагностикумы (бактериальные, вирусные, эритроцитарные), полу­чение и использование.

    В диагностических целях при обнаружении антител в сыворотке крови больных, реконвалесцентов и бактерионосителей используются серологические реакции.Для постановки таких реакций применяются диагностикумпрепараты, содержащие взвесь обезвреженных микроорганизмов или определенные антигены. Необходимость использования диагностикумов для серологических реакций связана не только с явным их преимуществом перед живыми культурами микробов (безопасность в работе), но еще и потому, что для приготовления диагностикумов подбираются штаммы микроорганизмов с высокой чувствительностью к антителам и способностью длительно сохранять антигенные свойства.Для инактивации микроорганизмов при приготовлении диагностикумов чаще всего используются химические вещества, особенно формалин, являющийся лучшим консервантом. Убитые нагреванием микробы хуже сохраняют антигенные свойства и применяются редко. В серологических реакциях (реакции агглютинации, реакции пассивной гемагглютинации, реакции связывания комплемента, реакции торможения гемагглютинации) для выявления специфических антител применяются: бактериальные, эритроцитарные и вирусные диагностикумы. Бактериальные диагностикумы могут содержать инак- тивированную микробную взвесь или отдельные антигенные компоненты бактерий: О, Н или Vi-антигены и используются в реакциях агглютинации. Эритроцитарные диагностикумы представляют собой эритроциты (обработанные танином или формалином) с адсорбированными на них антигенами, извлеченными из бактерий, и применяются в РПГА (реакции пассивной гемагглютинации). В том случае, когда РПГА используется для выявления антигена в выделениях больных, в тканях и др., применяют «аитительные диагностикумы», т. е. эритроциты, сенсибилизированные антителами. Вирусные диагностикумы — препараты, содержащие инактированные вируссодержащие жидкости (культуральные,из куриных эмбрионов или организма животных, зараженных соответствующим вирусом), применяются в РСК. (реакции связывания комплемента), реакции торможения гемагглютинации (РТГА) и реакции нейтрализации. Примеры: 1. Бактериальный диагностируй сальмонелл тифа 2. Сальмонеллезные О-диагностикумы 3. Единый бруцеллезный диагностикум 4. Эритроцитарный сальмонеллезный О-диагностикум. Диагностикум используется в РТГА и РСК. с сывороткой больных при диагностике заболевания.

    88. Вакцины. Определение. Классификация. Требования, предъявляе­мые к вакцинным препаратам.

    Вакцины — препараты, служащие для создания активного искусственного приобретенного иммунитета. В настоящее время известны следующие вакцинные препараты:

    1) живые вакцины, представляющие собой ослабленные в своей вирулентности различные микроорганизмы; 2) убитые, содержащие инактивированные возбудители заболеваний; 3) химические, состоящие из растворимых антигенов бактерий, извлеченных химическими методами; 4) анатоксины, обезвреженные формалином экзотоксины возбудителей токсинемических инфекций. Препараты, предназначенные для проведения иммунизации против одной какой-нибудь инфекции, получили название моновакцины; против двух инфекционных заболеваний — дивакцины; против трех — тривакцины; против нескольких инфекций — поливакцины. Ассоциированными вакцинами называются препараты, содержащие смесь из антигенов различных бактерий и анатоксинов. Применение ассоциированных вакцин, таких как АКДС или TABte дает возможность создавать иммунитет в отношении нескольких инфекций и сокращать число прививок. Поливалентными вакцинами принято называть препараты, которые включают несколько разновидностей или серологических типов возбудителей одной инфекции (например, противогриппозные, лептоспирозные и др.).
    89. Живые вакцины. Получение, применение: достоинства и недостатки.

    Живые вакцины представляют собой мутанты, то есть вакцинные штаммы микроорганизмов с остаточной вирулентностью, не способные вызывать специфические заболевания, но сохранившие способность размножаться и находиться в организме, приводя к развитию бессимптомной вакцинной инфекции. Вакцинные штаммы для приготовления живых вакцин были получены различными путями: методом отбора (селекции)мутантов с ослабленной вирулентностью, методом экспериментального направленного изменения вирулентных свойств озбудителя, длительным пассированием в организме животных, методом генетического скрещивания (получения рекомбинантов). В последние годы был применен еще один метод для получения вакцинных штаммов, основанный на использовании генетических скрещиваний, результатом которых являются рекомбинанты со сниженной вирулентностью. Так был получен акцинный штамм вируса гриппа А при взаимодействии авирулентного исходного штамма (содержащего гемагглютинин Н? и нейраминидазу N2) и вирулентного штамма Гонконг H3N2). Рекомбинант содержал гемагглютинин Н3 вирулентного вируса Гонконг и сохранил авирулентность исходного вакцинного штамма.Живые вакцины имеют целый ряд преимуществ в сравнении с другими видами вакцин, и связано это свойство с тем, что пребывание и размножение в организме человека и животных аттенуированных вакцинных штаммов приводит к развитию вакцинной инфекции (специфического инфекционного заболевания без выраженных клинических симптомов).Вакцинная инфекция, проявляясь ли в виде местного воспалительного процесса или сопровождаемая общей реакцией организма, всегда влечет за собой перестройку иммунобиологических свойств организма и выражается в выработке специфического иммунитета. Живые вакцины, как правило, вводятся однократно и более простыми способами (перорально, интраназально, накожно, реже подкожно). Способность вакцинного штамма размножаться и присутствие в организме постоянного антигенного раздражителя обеспечивает напряженный, прочный и довольно длительный иммунитет.К вакцинным штаммам предъявляются следующие основные требования:а) наличие остаточной вирулентности;б) достаточная иммуногенность;в) отсутствие возможности реверсии к исходным свойствам.Таким образом, вакцинные штаммы должны обладать стойкими, наследственно закрепленными аттенуированными свойствами. Для сохранения жизнеспособности и стабильности свойств

    большинство живых вакцин выпускают в сухом виде, что достигается методом лиофилизации — высушивание из-за мороженного состояния под глубоким вакуумом. Сухие вакцины могут сохраняться в течение года и более при температуре холодильника (не выше 4°—8°С).
    90. Инактивированные, корпускулярные вакцины. Приготовление и при­менение. Достоинства и недостатки.

    Убитые — корпускулярные вакцины содержат взвеси бактерий, вирусов или риккетсий, инактивированных повышенной температурой или различными химическими веществами. Убитые вакцины применяются для профилактики инфекционных заболеваний, а также с лечебной целью (для стимуляции защитных свойств организма при хронических процессах). Для получения убитых вакцин используют высокопатогенные штаммы, полноценные в отношении вирулентности и антигенного строения, отобранные после тщательного изучения. Бактериальные культуры при приготовлении вакцин выращивают в специальных реакторах с жидкой питательной средой, позволяющих получать одновременно сотни литров бактериальной взвеси. Инактивация бактериальной массы проводится так, чтобы надежно убить бактерии с минимальным повреждением антигенных свойств. Так, гретые вакцины получают при прогревании бактерийной взвеси при 56°С, не более. При воздействии химических веществ соответственно готовят формалиновые, феноловые, спиртовые, ацетоновые вакцины. Преимуществом убитых вакцин является относительная простота их получения, не требующая длительного выделения и изучения штаммов, большая устойчивость при хранении и более длительный срок пригодности. К недостаткам вакцин из убитых бактерий следует отнести их меньшую иммуногенность и необходимость двух или трехкратных прививок. А такие вакцины как формалинизнрованные еще и достаточно реактогенны, вызывая местную реакцию (боль, чувство жжения на месте введения) и общие явления с повышением температуры тела. Иммунитет после введения убитых вакцин менее продолжителен в сравнении с иммунитетом, развивающимся после вакцинации живыми вакцинами. Вакцины из убитых бактерий с успехом применяются и для лечения инфекционных заболеваний, имеющих характер хронического процесса (бруцеллез, хроническая дизентерия, хроническая гонорея, стафилококковые инфекции). Вакцины из убитых бактерий вводятся при недостаточной эффективности лекарственных препаратов, часто связанной со снижением антибиотикочувствительности возбудителен. Действующим началом таких вакцин является микробная клетка с входящими в ее состав антигенами, которые стимулируют иммуногенез. При лечении убитыми вакцинами активируются фагоцитарные свойства лейкоцитов и клеток макрофагальной системы, усиливается иммуногенез. Действие вакцин строго специфично, применение индивидуально. Это связано с тем, что вакцинотерапия вызывает у больных,

    как правило, обострение инфекционного процесса.

    91. Химические (субклеточные) вакцины. Получение. Преимущества. Применение. Роль адъювантов.

    Химическими вакцинами принято называть препараты, содержащие наиболее активные по иммунологическим свойствам антигены, извлекаемые из микробных клеток различными методами (например, ферментативным перевариванием с последующим осаждением антигена этиловым спиртом). Следует помнить, что термин «химическая» вакцина не вполне оответствует своему названию, так как такие вакцины не являются химическими веществами в чистом виде, а представляют собой группы антигенов, эндотоксины и т. д. Преимущество химических вакцин в том, что, во-первых, из микробных клеток выделяются иммунологически активные субстанции — изолированные антигены (комплекс—-липополисахариды с полипептидами или протективные антигены), во-вторых, они менее реактогенны, в-третьих, стабильны и легче подвергаются стандартизации, что дает возможность более точно дозировать, и, наконец, четвертое — химические вакцины можно вводить в больших дозах и в виде ассоциированных препаратов. Одним из недостатков химической вакцины являются не-

    большие размеры вводимых комплексов, что приводит к быстрому выведению их из организма и краткому антигенному раздражению. Поэтому химические вакцины вводятся на адъювантах (лат. adjuvans — помогающий), в качестве которых используются различные минеральные адсорбенты(гидрат окиси алюминия, фосфат кальция), минеральные масла. Адъюванты способствуют повышению эффективности вакцинации, так как они укрупняют антигенные частицы, создают в месте введения «депо», из которого происходит замедленная резорбция антигена, что приводит к перманентному антигенному раздражению. Кроме того, депонирующие вещества являются неспецифическими стимуляторами, вызывая приток плазматических клеток, непосредственно участвующих в выработке антител, что связано с развитием местного воспалительного процесса и стимуляции пролиферативной и фагоцитарной активности ретикуло-эндотелиальной системы.
    92. Анатоксины, их получение, титрование и практическое применение.

    Анатоксины (anatoxinum от греч.— «an» — отрицание и toxo» — отравляю) представляют собой препараты, полученные из бактериальных экзотоксинов, полностью лишенные т ксических свойств, но сохранившие антигенные и иммуногенные свойства. Метод получения анатоксина предложил в 1923 году крупнейший французский ученый Рамон (G. Ramon).При приготовлении анатоксинов культуры бактерий — возбудителей токсинемических инфекций, продуцирующих экзотоксины, выращивают в жидких питательных средах (реакто-

    рах большой емкости) для накопления токсина. Затем фильтруют через бактериальные фильтры для удаления микробных тел. К фильтрату добавляют 0,3—0,4 % —формалина и помещают в термостат при температуре 37°—40°С н а 3—4 недели до полного исчезновения токсических свойств. Полученный анатоксин проверяют на стерильность, безвредность и иммуногенность. Такие препараты получили название нативных анатоксинов, т. к. они содержат большое количество веществ питательной среды, которые являются балластными и могут

    способствовать развитию нежелательных реакций организма при введении препарата. Нативные анатоксины необходимо вводить в больших дозах из-за их невысокой удельной активности. Поэтому в настоящее время применяются преимущественно очищенные анатоксины, для чего нативные анатоксины подвергают обработке различными физическими и химическими методами (ионнообменной хромотографии, кислотному осаждению и др.), чтобы освободить от всех балластных веществ и сконцентрировать препарат в меньшем объеме. Однако уменьшение размеров частиц анатоксина сделало необходимым адсорбировать препарат на адъютантах

    Таким образом, применяющиеся анатоксины являются адсорбированными высокоочищенными концентрированными препаратам:'Специфическую активность или силу анатоксина определяют в реакции флоккуляции в так называемых единицах флоккуляции— (Lf) или по реакции связывания анатоксинов, выражающуюся в единицах связывания— (ЕС). Титрование анатоксинов в реакции флоккуляции (по методу Рамона) производят по стандартной флоккулирующей антитоксической сыворотке, в которой известно количество международных антитоксических единиц (ME, см. с. 23) в 1 мл. Одна антигенная единица анатоксина обозначается Limes flocculationis (Lf — порог флоккуляции), это то количество анатоксина, которое вступает в реакцию флоккуляции с одной единицей дифтерийного антитоксина. Определив дозу анатоксина, давшую инициальную (первичную) реакцию флоккуляции с одной антитоксической единицей сыворотки, рассчитывают количество Lf препарата в 1 мл. Антигенные свойства столбнячного анатоксина (и некоторых других) обозначают в единицах связывания (ЕС). Для определения ЕС необходимы:испытуемый препарат анатоксина, стандартная антитоксическая сыворотка (с содержанием 0,1 ME в 1 мл), опытная доза токсина (вытитрованная к 0,1 ME стандартной сыворотки), белые мыши.Реакцию связывания проводят следующим образом: в ряд пробирок с одинаковым объемом стандартной сыворотки добавляют различные разведения испытуемого анатоксина.Смесь для связывания выдерживают в термостате 45 минут,затем в каждую пробирку добавляют опытную дозу токсина и вновь оставляют в термостате на 45 минут. После этого из каждой пробирки вводят смесь (сыворотки — анатоксина —токсина) 2—4 мышам и наблюдают за состоянием животных в течение 4 суток. Если весь анатоксин, добавленный к сыворотке, связался ею, то добавление токсина и последующее

    заражение мышей ведет к их гибели. При недостаточной дозе анатоксина для связывания всей сыворотки, добавленный токсин нейтрализуется сывороткой, и мыши остаются живыми. Для расчета ЕС в 1 мл определяемого анатоксина берется то разведение анатоксина, при котором происходит гибель 50% белых мышей на 4-е сутки. Это количество анатоксина содержит дозу, связывающую 0,1 ME сыворотки. Анатоксины применяются для профилактики и реже для лечения токсинемических инфекций (дифтерия, газовая ган-

    грена, ботулизм, столбняк) и некоторых заболеваний, вызванных стафилококками.

    1   2   3   4   5   6   7   8   9   10


    написать администратору сайта