Главная страница
Навигация по странице:

  • Профаза.

  • ^ Вторая стадия митоза - прометафаза

  • ^ Третья стадия митоза - метафаза

  • ^ Четвертая стадия митоза - анафаза

  • ^ В пятой заключительной стадии митоза телофазе

  • Пролиферация.

  • 13. Физиологическая и репаративная регенерация. Биологическое и медицинское значение проблем регенерации.

  • 14. Временная организация клетки. Клеточный и митотический цикл. Строение хромосом и динамика её структур в клеточном цикле. Гетеро- и эухроматин.

  • 15. Строение ДНК. Модель ДНК Уотсона-Крика. Нуклеотиды, участки с уникальными и повторяющимися последовательностями нуклеотидов, их функциональное значение.

  • 16. Основные требования, предъявляемые к материальному субстрату, ответственному за наследственность. Реализация наследственной информации.

  • 17. Этапы синтеза белка (экспрессия гена). Пути транспорта синтезированного белка в клетке и за её пределами.

  • 18. Линейное расположение генов в хромосомах. Сцепление генов. Кроссинговер

  • 1. Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины. Медикогенетические аспекты семьи


    Скачать 0.54 Mb.
    Название1. Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины. Медикогенетические аспекты семьи
    АнкорBiologia.docx
    Дата26.04.2017
    Размер0.54 Mb.
    Формат файлаdocx
    Имя файлаBiologia.docx
    ТипДокументы
    #5564
    КатегорияБиология. Ветеринария. Сельское хозяйство
    страница3 из 13
    1   2   3   4   5   6   7   8   9   ...   13

    Митоз (от греч. mitos - нить) - деление ядра, следующее за репликацией хромосом, в результате чего дочерние ядра содержат то же число хромосом, что и родительские. Митоз имеет сложный механизм, включающий несколько фаз, необходимость которого возникла в процессе эволюции тогда, когда появились клетки с резко увеличенным количеством ДНК, упакованной в отдельные хромосомы. Процесс митоза составляют: профаза, прометафаза, метафаза, анафаза и телофаза.
    Профаза. В начале профазы многочисленные цитоплазматические микротрубочки, входящие в состав цитоскелета, распадаются; при этом образуется большой пул свободных молекул тубулина. Эти молекулы вновь используются для построения главного компонента митотического аппарата - митотического веретена. Каждая пара центриолей становится частью митотического центра, от которого лучами расходятся микротрубочки (фигура "звезда"). Вначале обе звезды лежат рядом около ядерной мембраны. В поздней профазе пучки полюсных микротрубочек, взаимодействующие друг с другом (и видимые в световой микроскоп как полюсные нити), удлиняются и как будто расталкивают два митотических центра друг от друга вдоль наружной поверхности ядра. Таким способом образуется биполярное митотическое веретено.
    ^ Вторая стадия митоза - прометафаза начинается с быстрого распада ядерной оболочки на мелкие фрагменты, неотличимые от фрагментов цитоплазматического ретикулума. Эти фрагменты остаются видимыми около веретена. В клетках млекопитающих прометафаза занимает 10-20 минут. Расположенное около ядра митотическое веретено может теперь проникнуть в ядерную область. В хромосомах с каждой стороны центромеры образуются особые структуры - кинетохоры. Обычно у каждой хромосомы оказывается по одной кинетохорной нити, связанной с каждым из полюсов. В результате этого возникают две противоположно направленные силы, которые и приводят хромосому в экваториальную плоскость. Таким образом, беспорядочные прометафазные движения хромосом и их случайная окончательная ориентация обеспечивает случайную сегрегацию хроматид между дочерними клетками, столь важную в мейозе.
    ^ Третья стадия митоза - метафаза часто продолжается длительное время. Все хромосомы располагаются таким образом, что их центромеры лежат в одной плоскости (метафазная пластинка). Метафазные хромосомы удерживаются в обманчиво статичном состоянии сбалансированными полярными силами. За ориентацию хромосом перпендикулярно оси митотического веретена и расположение их на равном расстоянии от обеих полюсов веретена, скорее всего, ответственны кинетохорные нити. Вероятно, такое расположение хромосом в метофазной пластинке обусловлено способом создания тянущей силы в митотическом веретене: этот способ таков, что сила, действующая на кинетохорные нити тем слабее, чем ближе к полюсу находятся кинетохоры . см. метафаза 1 и 2. Каждая хромосома удерживается в метафазной пластинке парой кинетохоров и двумя пучками связанных с ними нитей, идущих к противоположным полюсам веретена. Метафаза резко оканчивается разделением двух кинетохоров каждой хромосомы.
    ^ Четвертая стадия митоза - анафаза продолжается обычно всего несколько минут. Анафаза начинается внезапным расщеплением каждой хромосомы, которое обусловлено разделением сестринских хроматид в точке их соединения в центромере. Это расщепление, разделяющее кинетохоры , не зависит от других событий митоза и происходит даже в хромосомах, не прикрепленных к митотическому веретену; оно позволяет полярным силам веретена, действующим на метафазную пластинку, начать перемещение каждой хроматиды к соответствующим полюсам веретена со скоростью порядка 1 мкм/мин. Во время этого анафазного движения кинетохорные нити укорачиваются по мере того, как хромосомы приближаются к полюсам. Примерно в это же время удлиняются нити митотического веретена и два полюса веретена расходятся еще дальше. Далее см. Митоз: движение хромосом в анафазе Клеточная стадия, на которой хромосомы расходятся к двум полюсам новых дочерних клеток.
    ^ В пятой заключительной стадии митоза телофазе разделенные дочерние хроматиды подходят к полюсам, кинетохорные нити исчезают. После удлинения полюсных нитей вокруг каждой группы дочерних хроматид образуется новая ядерная оболочка. Конденсированный хроматин начинает разрыхляться, появляются ядрышки, и митоз заканчивается.
    Пролиферация. Основной способ деления тканевых клеток — это митоз. По мере увеличения числа клеток возникают клеточные группы, или популяции, объединенные общностью локализации в составе зародышевых листков (эмбриональных зачатков) и обладающие сходными гистогенетическими потенциями. Клеточный цикл регулируется многочисленными вне- и внутриклеточными механизмами. К внеклеточным относятся влияния на клетку цитокинов, факторов роста, гормональных и нейрогенных стимулов. Роль внутриклеточных регуляторов играют специфические белки цитоплазмы. В течение каждого клеточного цикла существуют несколько критических точек, соответствующих переходу клетки из одного периода цикла в другой. При нарушении внутренней системы контроля клетка под влиянием собственных факторов регуляции элиминируется апоптозом, либо на некоторое время задерживается в одном из периодов цикла.

    13. Физиологическая и репаративная регенерация. Биологическое и медицинское значение проблем регенерации.

    Регенера́ция — способность живых организмов со временем восстанавливать повреждённые ткани, а иногда и целые потерянные органы. Регенерацией также называется восстановление целого организма из его искусственно отделённого фрагмента (например, восстановление гидры из небольшого фрагмента тела или диссоциированных клеток). У протистов регенерация может проявляться в восстановлении утраченных органоидов или частей клетки.

    Регенерацией называется восстановление организмом утраченных частей на той или иной стадии жизненного цикла. Регенерация, происходящая в случае повреждения или утраты какого-нибудь органа или части организма, называется репаративной. Регенерацию в процессе нормальной жизнедеятельности организма, обычно не связанную с повреждениями или утратой, называют физиологической.

    Физиологическая регенерация

    В каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи. Птицы периодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такие процессы носят название физиологической регенерации.

    Репаративная регенерация

    Репаративной называют регенерацию, происходящую после повреждения или утраты какой-либо части тела. Выделяют типичную и атипичную репаративную регенерацию.

    При типичной регенерации утраченная часть замещается путём развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (автотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага.

    При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна.

    14. Временная организация клетки. Клеточный и митотический цикл. Строение хромосом и динамика её структур в клеточном цикле. Гетеро- и эухроматин.

    Клеточный цикл  — это период существования клетки от момента её образования путем деления материнской клетки до собственного деления.

    Клеточный цикл эукариот состоит из двух периодов:

    Период клеточного роста, называемый «интерфаза», во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

    Периода клеточного деления, называемый «фаза М» (от слова mitosis — митоз).

    Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

    Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл. Ниже приводится краткая характеристика фаз цикла.

    Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.

    Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

    Профаза (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

    Метафаза (2n 4c) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

    Анафаза (4n 4c) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

    Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

    Гетерохроматин — участки хроматина, находящиеся в течение клеточного цикла в конденсированном (компактном) состоянии. Особенностью гетерохроматиновой ДНК является крайне низкая транскрибируемость.

    Эухроматин, активный хроматин обладающий способностью к интенсивному синтезу рибонуклеиновой кислоты (РНК) и большим содержанием негистоновых белков.

    15. Строение ДНК. Модель ДНК Уотсона-Крика. Нуклеотиды, участки с уникальными и повторяющимися последовательностями нуклеотидов, их функциональное значение.

    Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей, соединенных между собой по всей длине водородными связями. Нуклеотиды, входящие в состав ДНК содержат дезоксирибозу, и азотистое основание. Каждая цепь ДНК представляет собой полинуклеотид, состоящий из десятков тысяч нуклеотидов.

    Молекула РНК - полимер, состоящий из одной цепочки значительно меньших размеров. Мономерами являются нуклеотиды, состоящие из рибозы, остатка фосфорной кислоты и азотистого основания.

    В 1953г. – Уотсон и Крик, используя все известные на тот момент факты, публикуют 25 апреля в журнале Nature короткую статью. Им удалось убедительно доказать, что ДНК - это двойная спираль с комплементарными азотистыми основаниями.

    Согласно модели Уотсона и Крика молекула ДНК напоминает гибкую лестницу, закрученную вокруг воображаемой оси. Боковые стороны этой лестницы – чередующиеся остатки сахара и фосфорной кислоты, перекладины – комплементарные азотистые основания.

    В 1950г. – Э. Чаргафф внес вклад в изучение структуры ДНК .В своем эксперименте он использовал чистую ДНК и разрушал ее на нуклеотиды, подсчитывая количество азотистых оснований. Он установил что у разных видов их различное соотношение.

    Правила Чаргаффа (для ДНК):

    Сумма пиримидиновых нуклеотидов равна сумме пуриновых: Пур = Пир

    Содержание тимина равно содержанию аденина, а содержание гуанина равно содержанию цитозина: А=Т, Г=Ц.

    Количество 6-аминогрупп равно количеству 6-кетогрупп: Г+Т = А+Ц.

    Отношение А+Т \ Г+Ц видоспецифично.

    Биспиральная ДНК весьма жесткая молекула. Это свойство является единым принципом строения ДНК у всех живых организмов. Это говорит о монофилии животного и растительного мира.

    Число возможных вариаций ДНК бесконечно. Это объясняет разнообразность и уникальность животного мира.

    Реакция на ДНК – реакция Фельгена: реактив Шиффа – фуксин-сернистая кислота (сиренево-фиолетовые глыбки в ядре).

    Реакция на РНК – реакция Браше: реактив метиленовый зеленый - пиронин (малиново-красные гранулы в цитоплазме и окрашенные ядрышки).

    В молекуле ДНК каждый нуклеотид входит лишь в какой-нибудь один кодон. Поэтому код ДНК неперекрывающийся. Кодоны располагаются друг за другом без перерыва. Так как кодонов возможно 64, то одни и те же аминокислоты могут кодироваться различными триплетами. Такой код называют вырожденным или избыточным.

    16. Основные требования, предъявляемые к материальному субстрату, ответственному за наследственность. Реализация наследственной информации.

    1) Способность к самовоспроизведению – вещество должно обеспечить преемственность свойств в поколениях

    2) Уникальность – вещество должно иметь структуру, объясняющую существование миллионов видов и неповторимость.

    3) Специфичность – структура вещества должна предполагать синтез специфических белков.

    Организмы обладают способностью передавать следующим поколениям свои признаки и особенности, т.е. воспроизводить себе подобных. Это явление наследования признаков основано на передаче из поколения в поколение наследственной информации. Материальным носителем этой информации являются молекулы ДНК.

    Передача наследственной информации от одного поколения клеток к другому, от одного поколения организмов к последующему обеспечивается некоторыми фундаментальными свойствами ДНК. Она удваивается в каждом поколении клеток и может неопределенно долго воспроизводиться без каких-либо изменений. Относительно редкие изменения наследственной информации также могут воспроизводиться и передаваться от поколения к поколению. информационная РНК, несущая сведения о первичной структуре белковых молекул, синтезируется в ядре. Пройдя через поры ядерной оболочки, иРНК направляется к рибосомам, где осуществляется расшифровка генетической информации - перевод ее с «языка» нуклеотидов на «язык» аминокислот.

    17. Этапы синтеза белка (экспрессия гена). Пути транспорта синтезированного белка в клетке и за её пределами.

    Аминокислоты, из которых синтезируются белки, доставляются к рибосомам с помощью специальных РНК, называемых транспортными (тРНК). В клетке имеется столько же разных типов тРНК, сколько типов кодонов, шифрующих аминокислоты. На вершине каждого «листа» тРНК имеется последовательность трех нуклеотидов, комплементарных нуклеотидам кодона в иРНК. Такая последовательность нуклеотидов в структуре тРНК называется антикодоном.

    Для того чтобы аминокислота включилась в полипептидную цепь белка, она должна оторваться от тРНК. На втором этапе синтеза тРНК выполняет функцию переводчика с «языка» нуклеотидов на «язык» аминокислот. Такой перевод происходит на рибосоме

    Третий этап синтеза белка заключается в том, что фермент синтетаза присоединяет оторвавшуюся от тРНК аминокислоту к растущей полипептидной цепи. Информационная РНК непрерывно скользит по рибосоме, каждый триплет сначала попадает в первый участок, где узнается антикодоном тРНК, затем на второй участок. Сюда же переходит тРНК с присоединенной к ней аминокислотой, здесь аминокислоты отрываются от тРНК и соединяются друг с другом в той последовательности, в которой триплеты следуют один за другим

    Когда на рибосоме в первом участке оказывается один из трех триплетов, являющихся знаками препинания между генами, это означает, что синтез белка завершен. Готовая полипептидная цепь отходит от рибосомы.

    Процесс синтеза белковой молекулы требует больших затрат энергии. На соединение каждой аминокислоты с тРНК расходуется энергия одной молекулы АТФ.

    Можно условно выделить два пути транспорта белка в клетке:

    1. Из цитоплазмы в некоторые органеллы (ядро, пластиды, митохондрии)

    2. Большой путь везикулярного транспорта из ШЭР через аппарат Гольджи к другим органеллам (лизосомы, пероксисомы) и через секреторные везикулы во внеклеточную среду.

    18. Линейное расположение генов в хромосомах. Сцепление генов. Кроссинговер.

    Гены, локализованные в одной хромосоме, образуют групп; сцепления и наследуются, как правило, вместе.
    Число групп сцепления у диплоидных организмов равно гаплоидному набору хромосом. У женщин — 23 группы сцепления, у мужчин — 24.
    Сцепление генов, расположенных в одной хромосоме, может быть полным и неполным. Полное сцепление генов, т. е. совместное наследование, возможно при отсутствии процесса кроссинговера. Это характерно для генов половых хромосом, гетерогаметных по половым хромосомам организмов (ХУ, ХО), а также л для генов, расположенных рядом с центромерой хромосомы, где кроссинговер практически никогда не происходит.
    В большинстве случаев гены, локализованные в одной хромосоме, сцеплены не полностью, и в профазе I мейоза происходит обмен идентичными участками между гомологичными хромосомами. В результате кроссинговера аллельные гены, бывшие в составе групп сцепления у родительских особей, разделяются и формируют новые сочетания, попадающие в гаметы. Происходит рекомбинация генов.
    Гаметы и зиготы, содержащие рекомбинации сцепленных генов, называют кроссоверными. Зная число кроссоверных гамет и общее количество гамет данной особи, можно вычислить частоту кроссинговера в процентах по формуле: отношение числа кроссоверных гамет (особей) к общему числу гамет (особей) умножить на 100%.
    По проценту кроссинговера между двумя генами можно определить расстояние между ними. За единицу расстояния между генами — морганиду — условно принят 1% кроссинговера.
    Частота кроссинговера говорит и о силе сцепления между генами. Сила сцепления между двумя генами равна разности между 100% и процентом кроссинговера между этими генами.

    Т. Морган предположил, что гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме; чем реже кроссинговер, тем они ближе друг к другу.

                Одним из классических опытов Моргана на дрозофиле, доказывающим линейное расположение генов, был следующий. Самки, гетерозиготные по трем сцепленным рецессивным генам, определяющим желтую окраску тела y,белый цвет глаз w и вильчатые крылья bi, были скрещены с самцами, гомозиготными по этим трем генам. В потомстве было получено 1,2% мух кроссоверных, возникших от перекреста между генами уи  w; 3,5% − от кроссинговера между генами w  и biи 4,7% — между уи bi.

             Из этих данных с очевидностью вытекает, что процент перекреста является функцией расстояния между генами. Поскольку расстояние между крайними генами уи biравно сумме двух расстояний между уи ww  и bi,следует предположить, что гены расположены в хромосоме последовательно, т.е. линейно.
    1   2   3   4   5   6   7   8   9   ...   13


    написать администратору сайта