1 Определение жизнь с позиций системного подхода. Фундаментальные свойства живого
Скачать 1.01 Mb.
|
Рекомбинация — перераспределение генетического материала (ДНК или РНК) путём разрыва и соединения разных молекул, приводящее к появлению новых комбинаций генов или других нуклеотидных последовательностей. В широком смысле слова включает в себя не только рекомбинацию между молекулами ДНК, но и перекомбинацию (сортировку) генетического материала на уровне целых хромосом или ядер, а также обмен плазмидами между клетками. Рекомбинация, наряду с репликацией ДНК, транскрипцией РНК и трансляцией белков, относится к фундаментальным, рано возникшим в процессе эволюции, процессам. https://studfile.net/preview/9419736/page:2/ 23. геномные мутации причина изменение числа хромосом в кариотипе организма механизм возникновения мутации – полное нерасхождение хромосом в мейозе. Классификация полиплоидия – увеличение числа хромосом, кратное гаплоидному набору (5n, 4n, 6n). гетероплоидия – изменение числа хромосом. варианты гетероплоидии: нуллисомия – отсутствие в клетках организма какой-либо пары хромосом, в норме присущей данному виду (погибают все до рождения). моносомия – отсутствие одной хромосомы из пары, мутация летальна. полисомия – появление лишней хромосомы к паре гомологичных хромосом (добавление одной хромосомы) значение Они ведут к таким заболеваниям, как синдром Дауна (трисомия возникает с частотой 1 больной на 600 новорождённых), синдром Клайнфельтера и др. 24. Мутагены физические, химические и биологические факторы, способные вызвать мутации. По происхождению на эндогенные, образующиеся в процессе жизнедеятельности организма и экзогенные – все прочие факторы, в том числе и условия окружающей среды. По природе возникновения на физические, химические и биологические. 1)физические воздействия на живые организмы, которые оказывают либо прямое влияние на ДНК или вирусную РНК 2) К биологическим мутагенам относят ДНК- и РНК-содержащие вирусы, некоторые полипептиды и белки 3) К химическим мутагенам относятся многие химические соединения самого разнообразного строения. Значение снижение жизнеспособности организмов, гибель. Поставляет материал для естественного отбора Для человека вызывает генетические дефекты 25. Размножение. Бесполое. Признаки. Формы. Их характеристика. репродукция, присущая всем живым существам функция воспроизведения себе подобных Бесполое размножение – это воспроизводство потомства из соматических клеток одного организма. Признаки: 1) участвует одна особь 2) потомство имеет гены только материнского организма 3) быстрое воспроизведение генетически одинаковых организмов Формы и характеристика: деление клетки – простое бинарное или митозом, шизогония - образование большого числа дочерних клеток из одной исходной, Почкование – На теле родительской особи образуется небольшой вырост… Фрагментация - размножение многоклеточных организмов частями тела. спорообразование - размножение с помощью спор (спец. клеток, состоит из цитоплазмы ядра с малым количеством питат. в-в) , вегетативное размножение - образование новых особей из вегетативных органов( корень, стебель, лист) 26. Размножение. Понятие. Половое. Признаки. Формы. Примеры. Эволюционное значение. репродукция, присущая всем живым существам функция воспроизведения себе подобных. Половое размножение — это воспроизводство потомства из половых клеток двух организмов. Признаки: 1) две особи, 2) потомство имеет генетический материал двух родителей 3) генетическое разнообразие 4) приспособление к разным условиям среды Формы: 1) коньюгация - 2) гермафродитизм – 3) партеногенез – 4) оогамия - Эволюционное значение создает более сильное, более жизненное потомство. увеличивает наследственную изменчивость и предоставляет материал для естественного отбора. В результате повышаются приспособительные возможности организмов к меняющимся условиям внешней среды. Оно обеспечивает биологическое разнообразие видов, повышение их адаптивных возможностей и эволюционных перспектив. 27 - Гаметогенез (спермато- и овогенез). Цитологическая и цитогенетическая характеристика. Гаметогенез — процесс образования яйцеклеток (овогенез) и сперматозоидов (сперматогенез) — подразделяется на ряд стадий. В стадии размножения диплоидные клетки, из которых образуются гаметы, называют сперматогониями и овогониями. Эти клетки осуществляют серию последовательных митотических делений, в результате чего их количество существенно возрастает. Сперматогонии размножаются на протяжении всего периода половой зрелости мужской особи. Размножение овогоний приурочено главным образом к периоду эмбриогенеза. Овогонии и сперматогонии, как и все соматические клетки, характеризуются диплоидностью. Если в одинарном, гаплоидном наборе число хромосом обозначить как n, а количество ДНК — как с, то генетическая формула клеток в стадии размножения соответствует 2n2с до 5-периода и 2n4с после него. На стадии роста происходит увеличение клеточных размеров и превращение мужских и женских половых клеток в сперматоциты и овоциты I порядка. Важным событием этого периода является редупликация ДНК при сохранении неизменным числа хромосом. Последние приобретают двунитчатую структуру, а генетическая формула сперматоцитов и овоцитов I порядка приобретает вид 2п4с. Основными событиями стадии созревания являются два последовательных деления: редукционное и эквационное,— которые вместе составляют мейоз. После первого деления образуются сперматоциты и овоциты II порядка (формула п2с), а после второго — сперматиды и зрелая яйцеклетка (пс). В результате делений на стадии созревания каждый сперматоцит I порядка дает четыре сперматиды, тогда как каждый овоцит I порядка — одну полноценную яйцеклетку и редукционные тельца, которые в размножении не участвуют. Благодаря этому в женской гамете концентрируется максимальное количество питательного материала — желтка. Процесс сперматогенеза завершается стадией формирования, или спермиогенеза. Ядра сперматид уплотняются вследствие сверхспирализации хромосом, которые становятся функционально инертными. Пластинчатый комплекс перемещается к одному из полюсов ядра. Центриоли занимают место у противоположного полюса ядра, причем от одной из них отрастает жгутик, у основания которого в виде спирального чехлика концентрируются митохондрии. На этой стадии почти вся цитоплазма сперматиды отторгается, так что головка зрелого сперматозоида практически ее лишена. За счет генетического разнообразия половое размножение создает предпосылки к освоению разнообразных условий обитания; дает эволюционные и экологические перспективы; способствует осуществлению творческой роли естественно отбора. 28. Эволюционное значение создает более сильное, более жизненное потомство. увеличивает наследственную изменчивость и предоставляет материал для естественного отбора. В результате повышаются приспособительные возможности организмов к меняющимся условиям внешней среды. Оно обеспечивает биологическое разнообразие видов, повышение их адаптивных возможностей и эволюционных перспектив. 29. Моно-, ди- и полигибридное скрещивание. Их цитологические и статистические основы. Условия менделирования признаков. Менделирующие признаки у человека. Моногибридное скрещивание - называется скрещивание, при котором родительские признаки отличаются друг от друга по одной паре контрастных, альтернативных признаков. Результатом такого скрещивания в первом поколении будет единообразие полученных гибридов (все потомки будут гетерозиготными). Закон единообразия гибридов первого поколения - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку. Неполное доминирование - гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот. Кодоминироване - у гетерозигот признаки проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека, где А и В — доминантные гены, а 0 — рецессивный. Закон расщепления признаков - при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1. Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении. Дигибридное скрещивание - скрещивание организмов, различающихся по двум парам альтернативных признаков, например, окраске цветков (белая или окрашенная) и форме семян (гладкая или морщинистая). Закон Менделя III Закон независимого наследования — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Полигибридное скрещивание - когда родители различаются по аллелям трех и более генов, а в F1 образуются три- и полигетерозиготы. Соотношение генотипических и фенотипических классов в F2 три- и полигибридных скрещиваний, а также число типов гамет (и число фенотипов) у гибридов F1 определяются простыми формулами: при моногибридном скрещивании число типов гамет равно 2, при дигибридном 4(22), а при полигибридном – 2n; число генотипов равно соответственно 3, 9(32) и 3n. Условия выполнения закона расщепления при моногибридном скрещивании Расщепление 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу выполняется приближенно и лишь при следующих условиях: Изучается большое число скрещиваний (большое число потомков). Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью). Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны. Условия выполнения закона независимого наследования Все условия, необходимые для выполнения закона расщепления. Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность). Условия выполнения закона чистоты гамет +Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом. Некоторые наследственные признаки человека: ямочки на щеках (доминантный признак); приросшая мочка уха (рецессивный признак); рост волос по средней линии лба (доминантный признак); способность загибать язык назад (доминантный признак); расплющенный большой палец (доминантный признак); способность свертывать язык трубочкой (доминантный признак);монголоидный разрез глаз (доминантный признак); альбинизм (рецессивный признак); зрачок, заходящий на радужную оболочку (сцепленный с полом рецессивный признак) 30 - Взаимодействие аллельных генов в детерминации признаков: полное и неполное доминирование, кодоминирование, межаллельная комплементация, сверхдоминирование. Множественные аллели. Наследование групп крови у человека. Взаимодействие аллельных генов. Гены, которые занимают идентичные (гомологические) локусы в гомологичных хромосомах, называются аллельными. У каждого организма есть по два аллельных гена. Известны такие формы взаимодействия между аллельными генами: полное доминирование, неполное доминирование, кодоминированием и сверхдоминирование. Полное доминирование — это вид взаимодействия аллельных генов, при котором фенотип гетерозигот не отличается от фенотипа гомозигот по доминанте, то есть в фенотипе гетерозигот присутствует продукт доминантного гена. Полное доминирование широко распространено в природе, имеет место при наследовании, например, окраски и формы семян гороха, цвета глаз и цвета волос у человека, резус-антигена и мн. др. +Неполное доминирование - так называется вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву и имеет среднее (промежуточное) значение между ними. Имеет место при наследовании окраски околоцветника ночной красавицы, львиного зева, окраски шерсти морских свинок и пр. Множественный алелизм - у каждого организма есть только по два аллельных гена. Вместе с тем нередко в природе количество аллелей может быть более двух, если какой то локус может находится в разных состояниях. В таких случаях говорят о множественные аллели или множественный аллеломорфизм. Множественные аллели обозначаются одной буквой с разными индексами, например: А, А1, А3 ... Аллельные гена локализуются в одинаковых участках гомологичных хромосом. Поскольку в кариотипе всегда присутствуют по две гомологичных хромосомы, то и при множественных аллелях каждый организм может иметь одновременно лишь по два одинаковых или различных аллели. В половую клетку (вместе с различием гомологичних хромосом) попадает только по одному из них. Для множественных аллелей характерное влияние всех аллелей на один и тот же признак. Отличие между ними заключается лишь в степени развития признака. Второй особенностью является то, что в соматических клетках или в клетках диплоидных организмов содержится максимум по две аллели из нескольких, поскольку они расположены в одном и том же локусе хромосомы. Еще одна особенность присуща множественным аллелям. По характеру доминирования аллеломорфные признаки размещаются в последовательном ряду: чаще нормальный, неизмененный признак доминирует над другими, второй ген ряда рецессивный относительно первого, однако доминирует над следующими и т.д. Одним из примеров проявления множественных аллелей у человека есть группы крови системы АВО. Множественный алелизм имеет важное биологическое и практическое значение, поскольку усиливает комбинативну изменчивость, особенно генотипического. Множественные аллели. Наследование групп крови. - Множественный аллелизм – это явление, когда один признак (проявляющийся в нескольких формах) контролируется не одной парой аллельных генов, а несколькими аллелями генов, т. е. существует несколько аллеломорфных состояний одного гена, среди которых могут быть несколько доминантных или рецессивных аллелей. Пример: наследование групп крови у человека контролируется геном Ii (изогемагглютиноген), представленным тремя аллелями – А, В, О. Аллели А и В – доминантные, О – рецессивный. Группы крови системы АВО открыты в начале ХХ века австрийским учёным К. Ландштейнером при изучении поведения эритроцитов в сыворотке крови разных людей. Он обратил внимание, что при переливании крови эритроциты у одних людей распределяются равномерно, а у других склеиваются. Используя разные комбинации, он обнаружил три группы крови, I, II, III, а IV была установлена позже. Кодоминирование — вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву, и в фенотипе гетерозигот присутствуют продукты обоих генов. Имеет место при формировании, например, IV группы крови системы (АВ0) у человека.
Сверхдоминирование, сверхдоминантность (генетическая), лучшая приспособленность и более высокая селективная ценность (отборное преимущество) гетерозигот от моногибридного скрещивания (например, Аа) по сравнению с обоими типами гомозигот (АА и аа). Один из характерных примеров сверхдоминирвания является повышенная частота аллеля гена серповидноклеточной анемии в популяциях человека, живущих в условиях высокой вероятности заражения малярией. Мутантный аллель защищает организм от заболевания малярией. Гомозиготы по нормальному аллелю могут заболеть малярией и погибнуть, гомозиготы по мутантному аллелю - с высокой вероятностью гибнут от анемии. Гетрозиготы по этому гену не болеют серповидновлеточной анемией и устойчивы к малярии. В ряде случаев аллель гена, с которым связано сверхдоминирование является рецессивно летальным, и поддерживается в популяции за счёт преимущества гетерозигот. Гетерозиготы, имеющие нормальный и мутантный вариант этого гена, в ряде случаев, характеризуются повышенной жизнеспособностью. Межаллельная комплементация. Это редкий вид взаимодействия аллельных генов, при котором у организма, гетерозиготного по двум мутантным аллелям гена М(МIМII), возможно формирование нормального признака М. Например, ген М отвечает за синтез белка, имеющего четвертичную структуру и состоящего из нескольких одинаковых полипептидных цепей. Мутантный аллель Ml вызывает синтез измененного пептида Ml, а мутантный аллель МII определяет синтез другой, но тоже ненормальной полипептидной цепи. Взаимодействие таких измененных пептидов и компенсация измененные участков при формировании четвертичной структуры в редки: случаях может привести к появлению белка с нормальными свойствами. |