Главная страница
Навигация по странице:

  • Транспортная РНК (тРНК). Трансляция.

  • Рибосомная РНК (рРНК). Рибосомный цикл синтеза белка.

  • 12 - Особенности экспрессии генетической информации у прокариот. Взаимосвязь между геном и признаком. Регуляция экспрессии генов у прокариот

  • Структурными называются гены

  • 13 – Этапы экспрессии генов у эукариот. Их характеристика

  • 1 Определение жизнь с позиций системного подхода. Фундаментальные свойства живого


    Скачать 1.01 Mb.
    Название1 Определение жизнь с позиций системного подхода. Фундаментальные свойства живого
    Дата20.06.2022
    Размер1.01 Mb.
    Формат файлаdocx
    Имя файлаOtvety_ekzamen (1).docx
    ТипДокументы
    #604816
    страница2 из 8
    1   2   3   4   5   6   7   8

    Структура и виды рнк. Роль рнк в процессе реализации генетической информации.


    Матричная, или информационная, РНК (мРНК, или иРНК). Транскрипция.Для того чтобы синтезировать белки с заданными свойствами, к месту их построения поступает «инструкция» о порядке включения аминокислот в пептидную цепь. Эта инструкция заключена в нуклеотидной последовательности матричных,или информационных РНК(мРНК, иРНК), синтезируемых на соответствующих участках ДНК. Процесс синтеза мРНК называют транскрипцией.

    Синтез мРНК начинается с обнаружения РНК-полимеразой особого участка в молекуле ДНК, который указывает место начала транскрипции — промотора.После присоединения к промотору РНК-полимераза раскручивает прилежащий виток спирали ДНК. Две цепи ДНК в этом месте расходятся, и на одной из них фермент осуществляет синтез мРНК. Сборка рибонуклеотидов в цепь происходит с соблюдением их комплементарности нуклеотидам ДНК, а также антипараллельно по отношению к матричной цепи ДНК. В связи с тем, что РНК-полимераза способна собирать полинуклеотид лишь от 5'-конца к 3'-концу, матрицей для транскрипции

    может служить только одна из двух цепей ДНК, а именно та, которая обращена к ферменту своим 3'-концом (3' → 5'). Такую цепь называют кодогенной(рис. 3.24). Антипараллельность соединения двух полинуклеотидных цепей в молекуле ДНК позволяет РНК-полимеразе правильно выбрать матрицу для синтеза мРНК. 

    Продвигаясь вдоль кодогенной цепи ДНК, РНК-полимераза осуществляет постепенное точное переписывание информации до тех пор, пока она не встречает специфическую нуклеотидную последовательность — терминатортранскрипции. В этом участке РНК-полимераза отделяется как от матрицы ДНК, так и от вновь синтезированной мРНК (рис. 3.25). Фрагмент молекулы ДНК, включающий промотор, транскрибируемую последовательность и терминатор, образует единицу транскрипции — транскриптон.

    В процессе синтеза, по мере продвижения РНК-полимеразы вдоль молекулы ДНК, пройденные ею одноцепочечные участки ДНК вновь объединяются в двойную спираль. Образуемая в ходе транскрипции мРНК содержит точную копию информации, записанной в соответствующем участке ДНК. Тройки рядом стоящих нуклеотидов мРНК, шифрующие аминокислоты, называют кодонами.Последовательность кодонов мРНК шифрует последовательность аминокислот в пептидной цепи. Кодонам мРНК соответствуют определенные аминокислоты (табл. 3.1).

    Транспортная РНК (тРНК). Трансляция.Важная роль в процессе использования наследственной информации клеткой принадлежит транспортной РНК(тРНК). Доставляя необходимые аминокислоты к месту сборки пептидных цепей, тРНК выполняет функцию трансляционного посредника.

    Молекулы тРНК представляют собой полинуклеотидные цепи, синтезируемые на определенных последовательностях ДНК. Они состоят из относительно небольшого числа нуклеотидов —75—95. В результате комплементарного соединения оснований, которые находятся в разных участках полинуклеотидной цепи тРНК, она приобретает структуру, напоминающую по форме лист клевера (рис. 3.26).

    В ней выделяют четыре главные части, выполняющие различные функции. Акцепторный«стебель» образуется двумя комплементарно соединенными концевыми частями тРНК. Он состоит из семи пар оснований. 3'-конец этого стебля несколько длиннее и формирует одноцепочечный участок, который заканчивается последовательностью ЦЦА со свободной ОН-группой. К этому концу присоединяется транспортируемая аминокислота. Остальные три ветви представляют собой комплементарно спаренные последовательности нуклеотидов, которые заканчиваются неспаренными участками, образующими петли. Средняя из этих ветвей — антикодоновая —состоит из пяти пар нуклеотидов и содержит в центре своей петли антикодон.Антикодон — это три нуклеотида, комплементарные кодону мРНК, который шифрует аминокислоту, транспортируемую данной тРНК к месту синтеза пептида.

    Между акцепторной и антикодоновой ветвями располагаются две боковые ветви. В своих петлях они содержат модифицированные основания — дигидроуридин (D-петля) и триплет TψC, где \у —псевдоуриаин (Т^С-петля). Между аитикодоновой и Т^С-ветвями содержится дополнительная петля, включающая от 3—5 до 13—21 нуклеотидов.

    Рибосомная РНК (рРНК). Рибосомный цикл синтеза белка.Процесс взаимодействия мРНК и тРНК, обеспечивающий трансляцию информации с языка нуклеотидов на язык аминокислот, осуществляется нарибосомах.Последние представляют собой сложные комплексы рРНК и разнообразных белков, в которых первые образуют каркас. Рибосомные РНК являются не только структурным компонентом рибосом, но и обеспечивают связывание их с определенной нуклеотидной последовательностью мРНК. Этим устанавливаются начало и рамка считывания при образовании пептидной цепи. Кроме того, они обеспечивают взаимодействие рибосомы и тРНК. Многочисленные белки, входящие в состав рибосом наряду с рРНК, выполняют как структурную, так и ферментативную роль.

    12 - Особенности экспрессии генетической информации у прокариот. Взаимосвязь между геном и признаком.
    Регуляция экспрессии генов у прокариот:

    Регуляция генной активности у прокариот практически полностью осуществляется на уровне транскрипции. Первые работы, направленные на выяснение механизмов генетического контроля, были проверены в 50- 60- е годы.

    В 1961 году Жакобом и Моно была создана классическая модель оперона. Они определили оперон как поную еденицу выражения генов, включающую структурные гены, регуляторные гены и контролирующие элементы.

    Структурными называются гены, кодирующие необходимые для клетки бели с ферментативными или структурными функциями.

    Регуляторными называются гены, кодирующие регуляторные белки, которые контролируют экспрессию структурных генов на всех уровнях.

    Продукт регуляторного гена LacJ – белок репрессор – выключает транскрипцию трех структурных генов лактозного оперона (Lac Z, LacY и LacA) путем связывания с геном оператором (Lac0). Доступ РНК - полимеразы к гену просмотру (LacP) – точка начала транскрипции – оказывается закрыт, т . к. последовательность Lac0 перекрывается с последовательостью LacP. Лактозный репрессор в свою очередь находится под контролем небольшой углеводной молекулы – аллолактозы ,которая образуется в клетке при добавлении в среду лактозы. Аллолактоза соединяется с репрессором, конформация его изменяется, при этом теряется сродство к оперативному участку ДНК. Тогда РНК- полимераза транскрибирует структурные гены. Такая система регуляции позволяет производить ферменты, необходимые для расщепления лактозы только тогда, когда в клетке присутствует лактоза.

    Генетический контроль с помощь белков- репрессоров называется негативной регуляцией. Альтернативным способом является регуляция с помощью белков-активаторов. В этом случае регуляторные белки активируют связывание ДНК-полимеразы в промоторных областях. Такая регуляция транскрипционной активности генов носит название позитивной.

    Между геном и признаком существует сложная связь. Один ген может отвечать за развитие одного признака.

    Ген  иРНК  синтез белка (фермента)  биохимическая реакция↑условия среды  признак

    Гены отвечают за синтез белков, которые катализируют определенные биохимические реакции, в результате чего проявляются определенные признаки.

    Один ген может отвечать за развитие нескольких признаков, проявляя плейотропное действие. Выраженность плейотропного действия гена зависит от биохимической реакции, которую катализирует фермент, синтезируемый под контролем данного гена.

    За развитие одного признака могут отвечать несколько генов - это полимерное действие гена.

    Проявление признаков - результат взаимодействия различных биохимических реакций. Эти взаимодействия могут быть связаны с аллельными и неаллельными генами.

    Взаимодействие аллельных генов.

    Взаимодействие генов, находящихся в одной аллельной паре, происходит по типу:

    · полного доминирования;

    · неполного доминирования;

    · кодоминирования;

    · сверхдоминирования.

    При полном доминировании действие одного (доминантного) гена полностью подавляет действие другого (рецессивного). При скрещивании в первом поколении проявляется доминантный признак (например желтый цвет горошин).

    При неполном доминировании происходит ослабление действия доминантного аллеля в присутствии рецессивного. Гетерозиготные особи, полученные в результате скрещивания, имеют собственный генотип. Например, при скрещивании растений ночной красавицы с красными и белыми цветками появляются розовые.
    При кодоминировании проявляется действие обоих генов при одновременном их присутствии. В результате проявляется новый признак.

    Например, IV группа крови (IAIB) у человека формируется при взаимодействии генов IА и IB. По отдельности ген IАопределяет II группу крови, а IB - III группу крови.

    При сверхдоминировании у доминантного аллеля в гетерозиготном состоянии отмечается более сильное проявление признака, чем в гомозиготном.

    13 – Этапы экспрессии генов у эукариот. Их характеристика
    1   2   3   4   5   6   7   8


    написать администратору сайта