Главная страница
Навигация по странице:

  • 4. Законы раздражения возбудимых тканей. Полярный закон раздражения (Пфлюгер). Изменения мембранного потенциала под анодом и катодом постоянного тока.

  • 5. Законы раздражения возбудимых тканей. Соотношение между силой и временем раздражения. Хронаксиметрия.

  • 6. Законы раздражения возбудимых тканей. Адекватные и неадекватные раздражители. Порог раздражения.

  • 7. Нервные клетки, их классификация и функции. Особенности возникновения и распространения возбуждения в афферентных нейронах.

  • Современные представления о процессе возбуждения. Местный процесс возбуждения (локальный ответ), его переход в распространяющееся возбуждение. Изменение возбудимости при возбуждении.

  • 9. Распространение возбуждения по нервным волокнам. Классификация нервных волокон (Эрлангер и Гассер). Трофическая функция нервных клеток.

  • 1. Понятие о регуляции, саморегуляции. Принципы гуморальной и рефлекторной регуляции функций в организме. Нейрогуморальная регуляция


    Скачать 299 Kb.
    Название1. Понятие о регуляции, саморегуляции. Принципы гуморальной и рефлекторной регуляции функций в организме. Нейрогуморальная регуляция
    Дата30.05.2018
    Размер299 Kb.
    Формат файлаdoc
    Имя файла1-29.doc
    ТипДокументы
    #45411
    страница2 из 7
    1   2   3   4   5   6   7

    3. Потенциал действия.

    Возбуждение – клеток и тканей активно реагировать на раздражение. Возбудимость – это свойство ткани отвечать на возбуждение. 3 типа возбудимых тканей: нервная, железистая и мышечная.

    Возбуждение представляет собой как бы взрывной процесс, возникающий в

    результате изменения проницаемости мембраны под влиянием раздражителя.

    Это изменение вначале относительно невелико и сопровождается лишь небольшой

    деполяризацией, небольшим уменьшением мембранного потенциала в том месте,

    где было приложено раздражение, и не распространяется вдоль возбудимой

    ткани (это так называемое местное возбуждение). Достигнув критического –

    порогового - уровня, изменение разности потенциалов лавинообразно нарастает

    и быстро - в нерве за несколько десятитысячных долей секунды - достигает

    своего максимума.

    П.Д. возникает, когда мышечные клетки активны и возникает быстрый сдвиг мембранного потенциала в положительном направлении. При этом наружная поверхность участка становится заряжена отрицательно, внутренняя – положительно.

    Возникает при первичной деполяризации мембраны до -50мВ – критический уровень деполяризации. Приводит к открытию потенциал зависимых Na+ и K+ каналов. Через него ионы устремляются по градиенту: Na вовнутрь, а K наружу (пассивный транспорт). Поступление натрия внутрь обеспечивает восходящую фазу ПД (деполяризации) и инверсию потенциала на мембране. Открытие калиевых каналов запаздывает, К начинает выходить из клеток и рост ПД замедляется – нисходящая фаза (реполяризация) и восстановление исходного потенциала. Причиной остановки деполяризации и развития реполяризации служат:

    - увеличение деполяризации: МП достиг натриевого равновесия, электрохимический градиент для натрия уменьшается, т.е. уменьшается сила засасывания натрия.

    - при деполяризации мембраны происходит закрытие натриевых каналов => уменьшается проницаемость натрия.

    - открытие калиевых каналов, достигается калиевое равновесие.

    В какой-то момент величина натриевого тока уравновеш с величиной калиевого тока => прекращается изменение МП, что соответствует пику ПД, но величина входящего натриевого тока уменьш, а К увеличивается, возникает смещение равновесия в сторону калиевого тока и нач процесс реполяризации.

    В кардиомиоцитах возможно замедление МП и формируется плато.

    Следовая гиперполяризация.

    Обуславливается:

    - ионной природой

    - метаболической природой

    Ионная природа СГ связана с тем, что после достижения заряда величины МПП, К-каналы еще какое то время остаются открытыми, в результате МП смещается и становится равным величине К-равновесия. При метаболической природе транспорт натрия обеспечивается Na- насосом, требующим АТФ.

    В основе следовой деполяризации лежит ионный механизм: накапл К у наружн пов-ти мембраны. В результате инактивации Na-каналов формируется явление рефрактерности (способность клеток не отвечать на повт раздражение), но идет реполяризация. Фазы ПД: деполяризация, овершут («перебор», ПД больше 0), реполяризация, следовые потенциалы (гиперполяризационный и деполяризационный).
    4. Законы раздражения возбудимых тканей. Полярный закон раздражения (Пфлюгер). Изменения мембранного потенциала под анодом и катодом постоянного тока.

    1) закон полярного раздражения

    2) электротон

    3) закон порога (силы раздражения)

    4) закон крутизны

    5) закон длительности действия

    1. Закон полярности (Пфлюгер) – в момент замыкания раздражения тока или в момент увеличения его силы, заряд возникает в области катода (отрицат полюс), при ослаблении тока (в момент размыкания) - в области анода. При одной и то же силе раздражающее действие замыкания выражается сильнее, чем действие размыкании. В случае электродов снаружи:

    1) при включении тока раздражение возникает в области катода.

    2) при выключении – в области а-да.

    Закон электротона. Изменение полярности мембран изменяет величины МП, создаваемое пропусканием через данный участок мембраны эл тока от внешнего источника приводит к изменению возбудимости. Существует катэлектротон при выходящем токе, и анэлектротон при входящем токе.

    При действии катода – выход тока – происходит разрядка мембранной емкости, при этом возбудимость и проводимость оказываются повышенными. Под анодом идет процесс дозарядки мемб-уменьшается возбудимость и проводимость.

    5. Законы раздражения возбудимых тканей. Соотношение между силой и временем раздражения. Хронаксиметрия.

    1) закон полярного раздражения

    2) электротон

    3) закон порога (силы раздражения)

    4) закон крутизны

    5) закон длительности действия

    Закон крутизны. При раздражении деполяризаций ток должен нарастать круто. Если промежуток подачи тока велик, то происходит смещения уровня КУД в + сторону и изменяющийся в этом же направлении МП его не догоняет. Позитивное смещение КУД при длительной деполяризации - аккомодация – приспособление ткани к току. Если ток нарастает очень медленно, то он никогда не догонит КУД и никогда не возникнет ПД.

    Закон длительности действия. Каждому напряжению тока соответствует мин. длительность его воздействия на ткань, чтобы ток смог вызвать возбуждение. Если при данном напряжении удлинять время прохождения тока через ткань сверх мин длительности, то никакого изменения в наступлении эффекта возбуждения не происходит.

    Даже очень большое напряжение, если действ очень короткий промежуток времени не может вызвать возбуждение. Очень слабые раздражители как бы долго они не действовали, не вызывают возбуждения. Ответная реакция зависит от времени действия тока. Существует минимальное напряжение, которого достаточно при неограниченно долгом действии тока, чтобы вызвать возб. - реобаза. Мин время, которое необходимо, чтобы вызвать возб током в одну реобазу – полезное время. Хронаксия – время тока в 2 реобазы, прив к возб. Величина хронаксии находится во взаимосвязи со скоростью реакции: чем быстрее реагирует ткань, тем короче ее хронаксия. Хронаксия – миним время и миним напряжение, которое дает положительный эффект.
    6. Законы раздражения возбудимых тканей. Адекватные и неадекватные раздражители. Порог раздражения.

    1) закон полярного раздражения

    2) электротон

    3) закон порога (силы раздражения)

    4) закон крутизны

    5) закон длительности действия

    Закон порога. Для возбудимых элементов существует минимальная сила раздражителя, необходимая для миним по величине возбуждения, получившая название порог возбуждения. Величина порога является мерой возбудимости ткани. Т.е. порог – минимальная сила раздражителя, при которой возникает минимальная величина возбуждения.

    По своему физиологическому значению все раздражители делят на

    адекватные и неадекватные.

    Адекватными называются те раздражители, которые действуют на данную

    биологическую структуру в естественных условиях, к восприятию которых она

    специально приспособлена и чувствительность к которым у нее чрезвычайно

    велика. Для палочек и колбочек сетчатки глаза адекватным раздражителем

    являются лучи видимой части солнечного спектра, для тактильных рецепторов

    кожи - давление, для вкусовых сосочков языка - разнообразные химические

    вещества.

    Неадекватными называются те раздражители, для восприятия которых данная

    клетка или орган специально не приспособлены. Так, мышца сокращается при

    воздействии кислоты или щелочи, электрического тока, внезапного растяжения,

    механического удара, быстрого согревания и т. д.

    Клетки значительно более чувствительны по отношению к своим адекватным

    раздражителям, чем к неадекватным. Это является выражением функционального

    приспособления, выработавшегося в процессе эволюции.
    7. Нервные клетки, их классификация и функции. Особенности возникновения и распространения возбуждения в афферентных нейронах.

    Нервная система человека и животных состоит из нервных клеток, тесно связанных с глиальными клетками. Классификация. Структурная классификация: На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны. Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено. Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге. Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях. Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе. Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (т. е. находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

    Функциональная классификация

    По положению в рефлекторной дуге различают :

    Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

    Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.

    Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными, их делят на комиссуральные и проекционные (головной мозг).

    Морфологическая классификация

    Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

    • учитывают размеры и форму тела нейрона;

    • количество и характер ветвления отростков;

    • длину нейрона и наличие специализированные оболочки.

    По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет от 150 мкм до 120 см.

    По количеству отростков выделяют следующие морфологические типы нейронов:

    • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;

    • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;

    • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;

    • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

    Функции нерв кл-ок: состоит в передаче информации (сообщений, приказов или запретов) с помощью нервных импульсов. Нервные импульсы распространяются по отросткам нейронов и передаются через синапсы (как правило, от аксональной терминали на сому или дендрит следующего нейрона). Возникновение и распространение нервного импульса, а также его синаптическая передача тесно связаны с электрическими явлениями на плазматической мембране нейрона. Одним из ключевых механизмов в деятельности нервной клетки является преобразование энергии раздражитель в электрический сигнал (ПД).

    Тела чувствительных клеток вынесены за пределы спинного мозга. Часть из них располагается в спинномозговых узлах. Это тела соматических афферентов, иннервирующих в основном скелетные мышцы. Другие находятся в экстра- и интрамуральных ганглиях автономной нервной системы и обеспечивают чувствительность только внутренних органов. Чувств. кл-ки имеют один отросток, который делится на 2 ветви. Одна из них проводит возбуждение от рецептора к телу клетки, другая – от тела нейрона к нейронам спинного или головного мозга. Распространение возбуждения из одной ветви в другую может происходит без участия тала клетки. Афферентный путь проведения возбуждения от рецепторов в ЦНС может включать от одной до нескольких афферентных нервных клеток. Первая нервная клетка, непосредственно связанная с рецептором, называется рецепторной, последующие – часто называют сенсорными, или чувствительными. Они могут располагаться на различных уровнях ЦНС, начиная от спинного мозга и кончая афферентными зонами коры больших полушарий. Афферентные нервные волокна, являющиеся отростками рецепторных нейронов, проводят возбуждение от рецепторов с различной скоростью. Большинство афферентных нервных волокон относится к группе А (подгруппам б, в и г) и проводят возбуждение со скоростью от 12 до 120 м/с. К этой группе принадлежат афферентные волокна, которые отходят от тактильных, температурных, болевых рецепторов. Процесс перехода возбуждения от афферентных нейронов к эфферентным осуществляется в нервных центрах. Необходимым условием оптимальной передачи возбуждения с афферентной части рефлекторной дуги на эфферентную через нервный центр является достаточный уровень метаболизма нервных клеток и их снабжение кислородом.
    8. Современные представления о процессе возбуждения. Местный процесс возбуждения (локальный ответ), его переход в распространяющееся возбуждение. Изменение возбудимости при возбуждении.

    Возбуждение – клеток и тканей активно реагировать на раздражение. Возбудимость – это свойство ткани отвечать на возбуждение. 3 типа возбудимых тканей: нервная, железистая и мышечная.

    Возбуждение представляет собой как бы взрывной процесс, возникающий в результате изменения проницаемости мембраны под влиянием раздражителя. Это изменение вначале относительно невелико и сопровождается лишь небольшой деполяризацией, небольшим уменьшением мембранного потенциала в том месте, где было приложено раздражение, и не распространяется вдоль возбудимой ткани (это так называемое местное возбуждение). Достигнув критического – порогового - уровня, изменение разности потенциалов лавинообразно нарастает и быстро - в нерве за несколько десятитысячных долей секунды - достигает своего максимума.

    Локальный ответ – добавочная деполяризация обусловленая повышением Na+-проводимости. Во время ло¬кальных ответов вход Na+ может существенно превосходить выход К+, однако Na+-ток еще не так велик, чтобы деполяризация мемб¬раны стала достаточно быстрой для возбуждения соседних участ¬ков или генерации потенциала действия. Возбуждение развивается не полностью, т.е. остается локальным процессом и не распрост¬раняется. Локальный ответ такого типа может конечно при не¬больших дополнительных стимулах, например синаптических потен¬циалах, легко переходить в полноценное возбуждение. Первые признаки локального ответа появляются при действии стимулов, составляющих 50-70% от пороговой величины. По мере дальнейшего усиления раздражающего тока локальный ответ увели¬чивается, и в момент, когда деполяризация мембраны достигает критического уровня, возникает потенциал действия.

    ИЗМЕНЕНИЕ ЭЛЕКТРОВОЗБУДИМОСТИ ПРИ ВОЗБУЖДЕНИИ ЭЛЕКТРОВОЗБУДИМОСТЬ – обратно пропорциональна порогу электрического раздражения. Ее обычно измеряют на фоне покоя. При возбуждении этот показатель изменяется. Изменение элек¬тровозбудимости в ходе развития пика потенциала действия и пос¬ле его завершения включает последовательно несколько фаз:

    1. Абсолютная рефрактерность - т.е. полная невозбудимость, определяемая сначала полной занятостью "натриевого" механизма, а затем инактивацией натриевых каналов (это примерно соотвест¬вует пику потенциала действия).

    2. Относительная рефрактерность - т.е. сниженная возбудимость, связанная с частичной натриевой инактивацией и развитием калиевой активации. При этом порог повышен, а ответ [ПД] ¬снижен.

    3. Экзальтация - т.е. повышенная возбудимость - супернормальность, появляющаяся от следовой деполяризации.

    4. Субнормальность - т.е. пониженная возбудимость, возникающая от следовой гиперполяризации.
    9. Распространение возбуждения по нервным волокнам. Классификация нервных волокон (Эрлангер и Гассер). Трофическая функция нервных клеток.

    Основной функцией аксонов является проведение импульсов, возникающих в нейроне. Аксоны могут быть покрыты миелиновой оболочкой или лишены ее. Миелиновые волокна чаще встречаются в двигательных нервах, безмиелиновые преобладают в автономной (вегетативной) нервной системе. Миелиновая оболочка не покрывает сплошным покровом осевой цилиндр, а прерывается, оставляя открытые участки осевого цилиндра, называемые узловыми перехватами (перехваты Ранвье). Длина участков между этими перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами Безмиелиновые нервные волокна покрыты только шванновской оболочкой. Проведение возбуждения в безмиелиновых волокнах отличается от такового в миелиновых волокнах благодаря разному строению оболочек. В безмиелиновых волокнах возбуждение постепенно охватывает соседние участки мембраны осевого цилиндра и так распространяется до конца аксона. Скорость распространения возбуждения по волокну определяется его диаметром. В нервных безмиелиновых волокнах, где процессы метаболизма не обеспечивают быструю компенсацию расхода энергии на возбуждение, распространение этого возбуждения идет с постепенным ослаблением — с декрементом. Декрементное проведение возбуждения характерно для низкоорганизованной нервной системы.

    У высших животных благодаря прежде всего наличию миелиновой оболочки и совершенства метаболизма в нервном волокне возбуждение проходит, не затухая, бездекрементно. Этому способствуют наличие на всем протяжении мембраны волокна равного заряда и быстрое его восстановление после прохождения возбуждения. В миелиновых волокнах возбуждение охватывает только участки узловых перехватов, т. е. минует зоны, покрытые миелином. Такое проведение возбуждения по волокну называется сальтаторным (скачкообразным). В узловых перехватах количество натриевых каналов достигает 12 000 на 1 мкм , что значительно больше, чем в любом другом участке волокна. В результате узловые перехваты являются наиболее возбудимыми и обеспечивают большую скорость проведения возбуждения. Время проведения возбуждения по миелиновому волокну обратно пропорционально длине между перехватами.

    Проведение возбуждения по нервному волокну не нарушается в течение длительного (многочасового) времени. Это свидетельствует о малой утомляемости нервного волокна. Считают, что нервное волокно относительно неутомляемо вследствие того, что процессы ресинтеза энергии в нем идут с достаточно большой скоростью и успевают восстановить траты энергии, происходящие при прохождении возбуждения. В момент возбуждения энергия нервного волокна тратится на работу натрий-калиевого насоса. Особенно большие траты энергии происходят в перехватах Ранвье вследствие большой плотности здесь натрий-калиевых каналов. Нервный ствол образован большим числом волокон, однако возбуждение, идущее по каждому из них, не передается на соседние. Эта особенность проведения возбуждения по нерву носит название закона изолированного проведения возбуждения по отдельному нервному волокну. Необходимым условием проведения возбуждения в нерве является не просто его анатомическая непрерывность, но и физиологическая целостность. Если нарушить свойства мембраны волокна (перевязка, блокада новокаином, аммиаком и др.), проведение возбуждения по волокну прекращается. Другим свойством, характерным для прове¬дения возбуждения по нервному волокну, является способность к двустороннему проведению. Нанесение раздражения между двумя отводящими электродами на поверхности волокна вызовет электри¬ческие потенциалы под каждым из них.

    Дж. Эрлангер и X. Гассер (1937) впервые классифицировали нервные волокна по скорости проведения возбуждения. Различная скорость проведения возбуждения по волокнам смешанного нерва выявляется при использовании внеклеточного электрода. 1) А-волокна – толстые миелинизированные, диам 3-20 мкм, скорость проведения возб 5-120 м/с: альфа – волокна от мышечных рецепторов; бета – от тактильных и барорецепторов; гамма – двигательные волокна мышечных веретен, дельта – от терморецепторов, механорецепторов и болевых рецепторов. 2) В-волокна – миелиновые отростки диам 1-3 мкм и скоростью проведения возб 3-14 м/с. По ним в основном передается ощущение боли. 3) С-волокна – большинство безмиелиновых волокон, диам не более 2 мкм и скоростью проведения возб -0,5-2 м/с. Это волокна от болевых, хемо- и некоторых механорецепторов.
    1   2   3   4   5   6   7


    написать администратору сайта