1. Понятие о статистике 3
Скачать 4.08 Mb.
|
5.5. Необходимая численность выборкиРазрабатывая программу выборочного наблюдения, задаются конкретным значением предельной ошибки и уровнем вероятности. Неизвестной остается минимальная численность выборки, обеспечивающая заданную точность. Ее можно получить из формул средней и предельной ошибок в зависимости от типа выборки. Так, подставляя формулы сначала (65) и затем (66) в формулу (67) и решая ее относительно численности выборки, получим следующие формулы: для повторной выборки n= ; (72) для бесповторной выборки n = . (73) Вариация ( ) значений признака к началу выборочного наблюдения как правило неизвестна, поэтому ее берут приближенно одним из способов: берется из предыдущих выборочных наблюдений; по правилу «трех сигм», согласно которому в размахе вариации укладывается примерно 6 стандартных отклонений (H/ = 6, отсюда = Н2 /36); если приблизительно известна средняя величина изучаемого признака, то = 2 /9; если неизвестна дисперсия доли единиц, обладающих каким-либо значением признака, то используется ее максимально возможная величина = 0,25. 5.6. Методические указанияЗадача. На предприятии в порядке случайной бесповторной выборки было опрошено 100 рабочих из 1000 и получены следующие данные об их доходе за месяц (таблица 24): Таблица 24. Результаты бесповторного выборочного наблюдения на предприятии
С вероятностью 0,950 определить: среднемесячный размер дохода работников данного предприятия; долю рабочих предприятия, имеющих месячный доход более 700 у.е.; необходимую численность выборки при определении среднемесячного дохода работников предприятия, чтобы не ошибиться более чем на 50 у.е.; необходимую численность выборки при определении доли рабочих с размером месячного дохода более 700 у.е., чтобы при этом не ошибиться более чем на 5%. Решение. Для расчета обобщающих характеристик выборки построим вспомогательную таблицу 25. Таблица 25. Вспомогательные расчеты для решения задачи
По формуле (11) рассчитаем средний доход в выборке: = 57100/100 = 571 (у.е.). Применив формулу (28) и рассчитав ее числитель в последнем столбце таблицы, получим дисперсию среднего выборочного дохода: = 4285900/100 = 42859. Теперь можно определить среднюю ошибку выборки по формуле (66): = = 19,640 (у.е.). В нашей задаче = 0,950, значит t = 1,96. Тогда предельная ошибка выборки по формуле (67): = 1,96*19,64 = 38,494 (у.е.). Для определения средней ошибки выборки при определении доли рабочих с доходами более 700 у.е. в ГС необходимо определить их долю: w = 20/100 = 0,2 или 20%, а затем ее дисперсию по формуле = w(1-w) = 0,2*(1–0,2) = 0,16. Тогда можно рассчитать среднюю ошибку выборки по формуле (66): = = 0,038 или 3,8%. А затем и предельную ошибку выборки по формуле (67): = 1,96*0,038 = 0,075 или 7,5%. Доверительный интервал среднего дохода находим по формуле (70): 571-38,494 571+38,494 или 532,506 у.е. 609,494 у.е., то есть средний доход всех рабочих предприятия с вероятностью 95% будет лежать в пределах от 532,5 до 609,5 у.е. Аналогично определяем доверительный интервал для доли по формуле (71): 0,2-0,075 p 0,2+0,075 или 0,125 p 0,275, то есть доля рабочих с доходами более 700 у.е. на всем предприятии с вероятностью 95% будет лежать в пределах от 12,5% до 27,5%. В нашей задаче выборка бесповторная, значит, воспользуемся формулой (73), в которую подставим уже рассчитанные дисперсии среднего выборочного дохода рабочих ( = 42859) и доли рабочих с доходами более 700 у.е. ( = 0,16): nб/повт = = 62 (чел.), nб/повт= = 197 (чел.). Таким образом, необходимо включить в выборку не менее 62 рабочих при определении среднего месячного дохода работников предприятия, чтобы не ошибиться более чем на 50 у.е., и не менее 197 рабочих при определении доли рабочих с размером месячного дохода более 700 у.е., чтобы при этом не ошибиться более чем на 5%. |