Главная страница

1. Понятие о статистике 3


Скачать 4.08 Mb.
Название1. Понятие о статистике 3
Дата20.12.2022
Размер4.08 Mb.
Формат файлаdoc
Имя файлаTEORIYA_STATISTIKI_-_lekcii.doc
ТипДокументы
#853901
страница18 из 43
1   ...   14   15   16   17   18   19   20   21   ...   43

5.4. Предельная ошибка выборки


Учитывая, что на основе выборочного обследования нельзя точно оценить обобщающую характеристику ГС, необходимо найти пределы, в которых он находится. В конкретной выборке разность может быть больше, меньше или равна . Каждое из отклонений от имеет определенную вероятность. При выборочном обследовании реальное значение в ГС неизвестно. Зная среднюю ошибку выборки, с определенной вероятностью можно оценить отклонение выборочной средней от генеральной и установить пределы, в которых находится изучаемый параметр (в данном случае среднее значение) в генеральной совокупности. Отклонение выборочной характеристики от генеральной называется предельной ошибкой выборки . Она определяется в долях средней ошибки с заданной вероятностью, т.е.

= t ,(67)

где tкоэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки.

Вероятность появления определенной ошибки выборки находят с помощью теорем теории вероятностей. Согласно теореме Чебышёва, при достаточно большом объеме выборки и ограниченной дисперсии генеральной ГС вероятность того, что разность между выборочной средней и генеральной средней будет сколь угодно мала, близка к единице:

при . (68)

А. М. Ляпунов доказал, что независимо от характера распределения генеральной ГС при увеличении объема выборки распределение вероятностей появления того или иного значения выборочной средней приближается к нормальному распределению (центральная предельная теорема). Следовательно, вероятность отклонения выборочной средней от генеральной средней, т.е. вероятность появления заданной предельной ошибки, также подчиняется указанному закону и может быть найдена как функция от tс помощью интеграла вероятностей Лапласа:

, (69)

где – нормированное отклонение выборочной средней от генеральной средней.

Значения P (интеграла Лапласа) для разных t рассчитаны и име­ются в специальной таблице, которая приведена в Приложении 1.

Вероятность, которая принимается при расчете выборочной характеристики, называется доверительной. Чаще всего принимают вероятность P = 0,950, которая означает, что только в 5 случаях из 100 ошибка может выйти за установленные границы. Задавшись конкретным уровнем вероятности, выбирают величину нормированного отклонения t по Приложению 1 и рассчитывают предельную ошибку выбор­ки по формуле (67).

После расчета предельной ошибки находят доверительный интервал обобщающей характеристики ГС совокупности по формуле (70) – для среднего значения, и по формуле (71) – для доли единиц, обладающих каким-либо значением признака:

или ( ) ( + )(70)

или ( ) d ( + ) (71)

Следовательно, при выборочном наблюдении определяется не одно, точное значение обобщающей характеристики ГС, а лишь ее доверительный интервал с заданным уровнем вероятно­сти. И это серьезный недостаток выборочного метода статистики.
1   ...   14   15   16   17   18   19   20   21   ...   43


написать администратору сайта