Главная страница
Навигация по странице:

  • Реакция нейтрализации вирусов как один из основных методов,применяемых в диагностике вирусных инфекций .Сущность методы постановки.

  • 23. Реакция связывания комплемента , ее фазы и практическое применение Реакция связывания комплемента (РСК)

  • Применение

  • Схема РСК с сывороткой здорового 24. Реакция торможения гемагглютинации. Механизм. Компоненты. Применение. Реакция торможения гемагглютинации

  • Реакция торможения гемагглютинации (РТГА)

  • Реакция иммунофлюоресценции (РИФ) Реакция иммунофлюоресценции - РИФ (метод Кунса).

  • Прямая РИФ Непрямая РИФ 25. В-лимфоциты. фазы их дифференцировки, субпопуляции, маркеры. строение bcr. формирование иммунного ответа гуморального типа на

  • 26. Т-лимфоциты. Фазы дифференцировки , субпопуляции. Иммунный ответ

  • Иммунология. иммуналогия отве-1. 1. Понятие об иммунитете. История развития иммунологии. Связь иммунологии


    Скачать 1.78 Mb.
    Название1. Понятие об иммунитете. История развития иммунологии. Связь иммунологии
    АнкорИммунология
    Дата16.05.2022
    Размер1.78 Mb.
    Формат файлаpdf
    Имя файлаиммуналогия отве-1.pdf
    ТипДокументы
    #531895
    страница7 из 14
    1   2   3   4   5   6   7   8   9   10   ...   14
    Применение. РНГА применяют для диагностики инфекционных болезней, определения гонадотропного гормона в моче при установлении беременности, для выявления повышенной чувствительности к лекарственным препаратам, гормонам и в некоторых других случаях.
    Механизм. Реакция непрямой гемагглютинации (РНГА) отличается значительно более высокой чувствительностью и специфичностью, чем реакция агглютинации. Ее используют для идентификации возбудителя по его антигенной структуре или для индикации и идентификации бактериальных продуктов — токсинов в исследуемом патологическом материале. Соответственно используют стандартные (коммерческие) эритроцитарные антительные диагностикумы, полученные путем адсорбции специфи- ческих антител на поверхности танизированных (обработанных танином) эритроцитов. В лунках пластмассовых пластин готовят последовательные разведения исследуемого материала. Затем в каждую лунку вносят одинаковый объем 3 % суспензии нагруженных антителами эритроцитов. При необходимости реакцию ставят параллельно в нескольких рядах лунок с эритроцитами, нагруженными антителами разной групповой специфичности.
    Через 2 ч инкубации при 37 °С учитывают результаты, оценивая внешний вид осадка эритроцитов (без встряхивания): при отрицательной реакции появляется осадок в виде компактного диска или кольца на дне лунки, при положительной реакции — характерный кружевной осадок эритроцитов, тонкая пленка с неровными краями.
    Реакция нейтрализации вирусов как один из основных методов,применяемых в
    диагностике вирусных инфекций .Сущность методы постановки.
    Реакция нейтрализации основана на способности специфических вируснейтрализующих антител блокировать инфекционные, гемагглютинирующие, гемадсорбирующие, цитопатические, бляшкообразующие и др. свойства вирусов.
    Она применяется в двух направлениях:1) для идентификации вирусов;2) для серодиагностики вирусных инфекций, т.е. для определения нарастания титра вируснейтрализующих антител в «парных» сыворотках.
    Компоненты:1. Исследуемый вирус (при идентификации выделенною вируса) или исследуемая сыворотка (при серодиагностике инфекции).2. Диагностическая (группе-, видо-, типоспецифическая) сыворотка (при идентификации вируса) или известный вирус
    — диагностикум (при серодиагностике).3. Индикаторный объект: животные, куриные эмбрионы, культуры тканей или эритроциты.
    Реакции нейтрализации ставят в культурах клеток, куриных эмбрионах и на лабораторных животных.
    Принцип. Смесью вирус (исследуемый или известный) + сыворотка (диагностическая или исследуемая), выдержанной в течение определенного времени, заражают культуру клеток,
    куриный эмбрион или лабораторное животное. При (+} реакции, т.е. при нейтрализации вируса антителами индикаторные объекты продолжают нормально существовать, а в контроле — гибель или характерные изменения.
    23. Реакция связывания комплемента, ее фазы и практическое применение
    Реакция связывания комплемента (РСК)заключается в том, что при соответствии друг другу антигенов и антител они образуют иммунный комплекс, к которому через Fc- фрагмент антител присоединяется комплемент (С), те происходит связывание комплемента комплексом антиген - антитело. Если же комплекс антиген - антитело не образуется, то комплемент остается свободным.
    Специфическое взаимодействие АГ и AT сопровождается адсорбцией (связыванием) комплемента. Поскольку процесс связывания комплемента не проявляется визуально, Ж.
    Борде и О. Жангу предложили использовать в качестве индикатора гемолитическую систему (эритроциты барана + гемолитическая сыворотка), которая показывает, фиксирован ли комплемент комплексом АГ-АТ. Если АГ и ATсоответствуют друг другу, т. е. образовался иммунный комплекс, то комплемент связывается этим комплексом и гемоли- за не происходит. Если AT не соответствует АГ, то комплекс не образуется и комплемент, оставаясь свободным, соединяется со второй системой и вызывает гемолиз.
    Компоненты. Реакция связывания комплемента (РСК) относится к сложным серологическим реакциям. Для ее проведения необходимы 5 ингредиентов, а именно:
    АГ, AT и комплемент (первая система), эритроциты барана и гемолитическая сыворотка
    (вторая система).
    Антигеном для РСК могут быть культуры различных убитых микроорганизмов, их лизаты, компоненты бактерий, патологически измененных и нормальных органов, тканевых липидов, вирусы и вирусосодержащие материалы.
    В качестве комплемента используют свежую или сухую сыворотку морской свинки.
    Механизм. РСК проводят в две фазы: 1-я фаза — инкубация смеси, содержащей три компонента антиген + антитело + комплемент; 2-я фаза (индикаторная) — выявление в смеси свободного комплемента путем добавления к ней гемолитической системы, состоящей из эритроцитов барана, и гемолитической сыворотки, содержащей антитела к ним. В 1-й фазе реакции при образовании комплекса антиген—антитело происходит связывание им комплемента, и тогда во 2-й фазе гемолиз сенсибилизированных антителами эритроцитов не произойдет; реакция положительная. Если антиген и антитело не соответствуют друг другу (в исследуемом образце нет антигена или антитела), комплемент остается свободным и во 2-й фазе присоединится к комплексу эритроцит — антиэритроцитарное антитело, вызывая гемолиз; реакция отрицательная.
    Применение. РСК применяют для диагностики многих инфекционных болезней, в частности сифилиса (реакция Вассермана).

    Схема РСК с
    сывороткой
    больного
    Схема РСК с
    сывороткой
    здорового
    24. Реакция торможения гемагглютинации. Механизм. Компоненты. Применение.
    Реакция торможения гемагглютинации (РТГА) - метод идентификации вируса или выявления противовирусных антител в сыворотке крови больного, основанный на феномене отсутствия агглютинации эритроцитов препаратом, содержащим вирус, в присутствии иммунной к нему сыворотки крови.
    Реакция торможения гемагглютинации (РТГА) основана на блокаде, подавлении ан- тигенов вирусов антителами иммунной сыворотки, в результате чего вирусы теряют свойство агглютинировать эритроциты.
    РТГА применяют для диагностики многих вирусных болезней, возбудители которых
    (вирусы гриппа, кори, краснухи, клещевого энцефалита и др.) могут агглютинировать эритроциты различных животных.
    Механизм. Типирование вируса проводят в реакции торможения гемаг-глютинации
    (РТГА) с набором типоспецифических сывороток. Результаты реакции учитывают по отсутствию гемагглютинации. Подтипы вируса А с антигенами H
    0
    N
    1
    , H
    1
    N
    1
    , Н
    2
    N
    2
    , H
    3
    N
    2
    и
    др. могут быть дифференцированы в РТГА с набором гомологичных типоспецифических сывороток.
    Реакция иммунофлюоресценции (РИФ)
    Реакция иммунофлюоресценции - РИФ (метод Кунса).
    Различают три разновидности метода прямой, непрямой, с комплементом. Реакция Кунса является методом экспресс- диагностики для выявления антигенов микробов или определения антител.
    Прямой метод РИФ основан на том, что антигены тканей или микробы, обработанные иммунными сыворотками с антителами, меченными флюорохромами, способны светиться в УФ-лучах люминесцентного микроскопа. Бактерии в мазке, обработанные такой люминесцирующей сывороткой, светятся по периферии клетки в виде каймы зеленого цвета.
    Непрямой метод РИФ заключается в выявлении комплекса антиген - антитело с помощью антиглобулиновой (против антитела) сыворотки, меченной флюорохромом. Для этого мазки из взвеси микробов обрабатывают антителами антимикробной кроличьей диагностической сыворотки. Затем антитела, не связавшиеся антигенами микробов, отмывают, а оставшиеся на микробах антитела выявляют, обрабатывая мазок антиглобулиновой (антикроличьей) сывороткой, меченной флюорохромами. В результате образуется комплекс микроб + антимикробные кроличьи антитела + антикроличьи антитела, меченные флюорохромом. Этот комплекс наблюдают в люминесцентном микроскопе, как и при прямом методе.
    Прямая РИФ
    Непрямая РИФ
    25. В-лимфоциты. фазы их дифференцировки, субпопуляции, маркеры.
    строение bcr. формирование иммунного ответа гуморального типа на
    тимусзависимые и тимуснезависимые антигены
    B-лимфоци
    ́ ты (B-клетки, от bursa fabricii птиц, где впервые были обнаружены) — функциональный тип лимфоцитов, играющих важную роль в обеспечении гуморального иммунитета. При контакте с антигеном или стимуляции со стороны T-клеток некоторые B-
    лимфоциты трансформируются в плазматические клетки, способные к продукции антител.
    Другие активированные B-лимфоциты превращаются в B-клетки памяти. Помимо продукции антител, В-клетки выполняют множество других функций: выступают в качестве антигенпрезентирующих клеток, продуцируют цитокины и экзосомы
    [
    У эмбрионов человека и других млекопитающих B-лимфоциты образуются в печени и костном мозге из стволовых клеток, а у взрослых млекопитающих — только в костном мозге. Дифференцировка В-лимфоцитов проходит в несколько этапов, каждый из которых характеризуется присутствием определённых белковых маркеров и степенью генетической перестройки генов иммуноглобулинов.
    Аномальная активность
    В-лимфоцитов может быть причиной аутоиммунных и аллергических заболеваний
    Дифференцировка В-лимфоцитов
    B-лимфоциты происходят от плюрипотентных гемопоэтических стволовых клеток, дающих также начало всем клеткам крови. Стволовые клетки находятся в определённом микроокружении, которое обеспечивает их выживание, самообновление или, при необходимости, дифференцировку. Микроокружение определяет, по какому пути пойдёт развитие стволовой клетки (эритроидному, миелоидному или лимфоидному)
    [1]
    Дифференцировка В-лимфоцитов условно делится на две стадии — антигеннезависимую (в которую происходит перестройка генов иммуноглобулинов и их экспрессия) и антигензависимую
    (при которой происходит активация, пролиферация и дифференцировка в плазматические клетки). Выделяют следующие промежуточные формы созревающих В-лимфоцитов:

    Ранние предшественники
    В-клеток
    — не синтезируют тяжёлых и лёгких цепей иммуноглобулинов, содержат зародышевые гены IgH и IgL, но содержат антигенный маркер, общий со зрелыми пре-В-клетками.

    Ранние про-В-клетки — D-J-перестройки в генах IgН.

    Поздние про-В-клетки — V-DJ-перестройки в генах IgН.

    Большие пре-В-клетки — гены IgН VDJ-перестроены; в цитоплазме есть тяжёлые цепи класса μ, экспрессируется пре-В-клеточный рецептор.

    Малые пре-В-клетки — V-J-перестройки в генах IgL; в цитоплазме есть тяжёлые цепи класса μ.

    Малые незрелые В-клетки — гены IgL VJ-перестроены; синтезируют тяжёлые и лёгкие цепи; на мембране экспрессируются иммуноглобулины (B-клеточный рецептор).

    Зрелые В-клетки — начало синтеза IgD.
    В-клетки поступают из костного мозга во вторичные лимфоидные органы
    (селезёнку и лимфатические узлы), где происходит их дальнейшее созревание, презентация антигена, пролиферация и дифференцировка в плазматические клетки и В-клетки памяти.
    В-клетки
    Экспрессия всеми
    В-клетками мембранных иммуноглобулинов позволяет осуществляться клональному отбору под действием антигена. При созревании, стимулировании антигеном и пролиферации существенно меняется набор маркеров В- клеток. По мере созревания В-клетки переключаются от синтеза IgM и IgD на синтез IgG, IgA, IgE (при этом у клеток сохраняется способность синтезировать также IgM и IgD — вплоть до трёх классов одновременно). При переключении синтеза изотипов антигенная специфичность антител сохраняется. Различают следующие типы зрелых В-лимфоцитов:


    Собственно В-клетки (ещё называемые «наивными» В-лимфоцитами) — неактивированные В-лимфоциты, не контактировавшие с антигеном. Не содержат тельца Голла, в цитоплазме рассеяны монорибосомы. Полиспецифичны и имеют слабое сродство к многим антигенам.

    В-клетки памяти — активированные В-лимфоциты, вновь перешедшие в стадию малых лимфоцитов в результате кооперации с Т-клетками. Являются долгоживущим клоном
    В-клеток, обеспечивают быстрый иммунный ответ и выработку большого количества иммуноглобулинов при повторном введении того же антигена. Названы клетками памяти, так как позволяют иммунной системе «помнить» антиген на протяжении многих лет после прекращения его действия. В-клетки памяти обеспечивают долговременный иммунитет.

    Плазматические клетки — являются последним этапом дифференцировки активированных антигеном В-клеток. В отличие от остальных В-клеток несут мало мембранных антител и способны секретировать растворимые антитела. Являются большими клетками с эксцентрично расположенным ядром и развитым синтетическим аппаратом — шероховатый эндоплазматический ретикулум занимает почти всю цитоплазму, также развит и аппарат Гольджи. Живут недолго (2-3 дня) и быстро элиминируются при отсутствии антигена, вызвавшего иммунный ответ.
    Гуморальный иммунный ответ на тимусзависимые и тимуснезависимые антигены.

    Антигены, в иммунном ответе на которые участвуют сопряженно T- и B-клетки, называют T-зависимыми антигенами . Однако некоторые антигены способны активировать B-клетки без помощи T-клеток. Это T-независимые антигены . Для этих антигенов характерен ряд общих свойств. Так, все они представляют собой крупные полимерные молекулы с повторяющимися антигенными детерминантами.
    Многие из них (при условии высокой их концентрации) способны активировать клоны B-клеток, специфичных к другим антигенам (феномен поликлональной специфичности ). Нередко они обнаруживают повышенную устойчивость к деградации.

    Первичный гуморальный ответ на T-независимые антигены обычно несколько слабее, чем на T-зависимые, и достигает пика несколько раньше. В обоих случаях продуцирутся главным образомIgM . Однако вторичные иммунные ответы на антигены этих двух типов резко различаются. При повторном введении T- независимого антигена ответ напоминает первичный, тогда как вторичная реакция на T-зависимые антигены гораздо сильнее первичной, и большую часть образующихся антител составляе IgG , т.е. происходит переключение изотипа на
    IgG и повышение аффинностиантител. Однако, следует при этом учесть, что T- независимая активация B-клеток обеспечивает преимущество для выживания, поскольку позволяет организму быстрее реагировать на микробные агенты. Многие бактериальные антигены действуют независимо от T-клеточной помощи, так как являются чрезвычайно сильными индукторами синтеза цитокинов ИЛ-1 , ИЛ-
    6 иФНО-альфа макрофагами .

    26. Т-лимфоциты. Фазы дифференцировки, субпопуляции. Иммунный ответ
    клеточного типа
    T-лимфоциты, или Т-клетки (от лат. thymus «тимус») — лимфоциты, развивающиеся у млекопитающих в тимусе из предшественников — претимоцитов, поступающих в него из красного костного мозга. В тимусе T-лимфоциты дифференцируются, приобретая Т- клеточные рецепторы (ТКР, англ. TCR) и различные корецепторы (поверхностные маркеры)
    [1]
    . Играют важную роль в приобретённом иммунном ответе. Обеспечивают распознавание и уничтожение клеток, несущих чужеродные антигены, усиливают действие моноцитов, NK-клеток, а также принимают участие в переключении изотипов иммуноглобулинов (в начале иммунного ответа B- клетки синтезируют IgM, позже переключаются на продукцию IgG, IgE, IgA).
    Т-клеточные рецепторы являются основными поверхностными белковыми комплексами
    Т-лимфоцитов, ответственными за распознавание процессированных антигенов, связанных с молекулами главного комплекса гистосовместимости (ГКГ, англ. Major
    Histocompatibility Complex (MHC)) на поверхности антигенпрезентирующих клеток
    [2]
    . Т- клеточный рецептор связан с другим полипептидным мембранным комплексом, CD3. В функции комплекса CD3 входит передача сигналов в клетку, а также стабилизация Т- клеточного рецептора на поверхности мембраны. Т-клеточный рецептор может ассоциироваться с другими поверхностными белками, его корецепторами. В зависимости от корецептора и выполняемых функций различают два основных типа Т-клеток
    Т-хелперы (от англ. helper — помощник) — Т-лимфоциты, главной функцией которых является усиление адаптивного иммунного ответа. Активируют Т-киллеры, B- лимфоциты, моноциты, NK-клетки при прямом контакте, а также гуморально, выделяя цитокины. Основным признаком Т-хелперов служит наличие на поверхности клетки молекулы корецептора CD4. Т-хелперы распознают антигены при взаимодействии
    их Т-клеточного рецептора с антигеном, связанным с молекулами главного комплекса гистосовместимости II класса
    Т-киллеры, цитотоксические T-лимфоциты, CTL (от англ. killer «убийца») — Т- лимфоциты, главной функцией которых является уничтожение повреждённых клеток собственного организма. Мишени Т-киллеров — это клетки, поражённые внутриклеточными паразитами (к которым относятся вирусы и некоторые виды бактерий), опухолевые клетки. Т-киллеры являются главным компонентом антивирусного иммунитета. Основным признаком Т-киллеров служит наличие на поверхности клетки молекулы корецептора CD8. Т-киллеры распознают антигены при взаимодействии их Т-клеточного рецептора с антигеном, связанным с молекулами главного комплекса гистосовместимости I класса
    Т-хелперы и Т-киллеры образуют группу эффекторных Т-лимфоцитов, непосредственно ответственных за иммунный ответ. В то же время существует другая группа клеток, регуляторные Т-лимфоциты, функция которых заключается в регулировании активности эффекторных Т-лимфоцитов. Модулируя силу и продолжительность иммунного ответа через регуляцию активности Т-эффекторных клеток, регуляторные Т- клетки поддерживают толерантность к собственным антигенам организма и предотвращают развитие аутоиммунных заболеваний. Существуют несколько механизмов супрессии: прямой, при непосредственном контакте между клетками, и дистантный, осуществляющийся на расстоянии — например, через растворимые цитокины.
    Дифференциация в тимусе
    Все Т-клетки берут своё начало от гемопоэтических стволовых клеток красного костного мозга, которые мигрируют в тимус и дифференциируются в незрелые тимоциты
    [4]
    . Тимус создаёт микросреду, необходимую для развития полностью функционального репертуара
    Т-клеток, который является ГКГ-ограниченным и толерантным к самому себе.
    Дифференциация тимоцитов разделяется на разные стадии в зависимости от экспрессии различных поверхностных маркеров (антигенов). На самой ранней стадии, тимоциты не экспрессируют корецепторы CD4 и CD8, и поэтому классифицируются как двойные негативные (англ. Double Negative (DN)) (CD4-CD8-). На следующей стадии тимоциты экспрессируют оба корецептора и называются двойными позитивными (СD4+CD8+).
    Наконец на финальной стадии происходит селекция клеток, которые экспрессируют только один из корецепторов: или (CD4+), или (CD8+).
    Раннюю стадию можно разделить на несколько подстадий. Так, на подстадии DN1 тимоциты имеют следующую комбинацию маркеров: CD44+CD25-CD117+. Клетки с данной комбинацией маркеров ещё называют ранними лимфоидными предшественниками. Прогрессируя в своей дифференциации, ELP активно делятся и окончательно теряют способность трансформироваться в другие типы клеток (например
    В-лимфоциты или миелоидные клетки). Переходя на подстадию тимоциты экспрессируют CD44+CD25+CD117+ и становятся ранними Т-клеточными предшественниками В течение DN3 подстадии ETP клетки имеют комбинацию CD44-
    CD25+ и вступают в процесс β-селекции.
    Т-лимфоциты. Клеточный иммунитет. Благодаря Т-лимфоцитам происходит клеточная иммунная система организма. Т-лимфоциты образуются из стволовых кроветворных клеток, которые мигрируют из костного мозга в вилочковую железу.

    Формирование Т-лимфоцитов делится на два периода: антигеннезависимый и антигензависимый. Антигеннезависимый период заканчивается образованием антиген- реактивных Т-лимфоцитов. Во время антигензависимого периода клетка подготавливается для встречи с антигеном и под его воздействием размножается, в результате чего образуются различные типы Т-клеток. Распознавание антигена происходит в связи с тем, что на мембране этих клеток находятся рецепторы, распознающие антигены. В результате распознавания клетки размножаются. Эти клетки вступают в борьбу с несущими антиген микроорганизмами или вызывают отторжение чужеродной ткани. Т-клетки регулярно переходят из лимфоидных элементов в кровь, межтканевую среду, что увеличивает вероятность их встречи с антигенами. Существуют различные субпопуляции Т- лимфоцитов: Т-киллеры (т.е. истребители), разрушающие клетки с антигеном; Т-хелперы, помогающие Т- и В-лимфоцитам реагировать на антиген и др.
    Т-лимфоциты при контакте с антигеном вырабатывают лимфокины, которые являются биологически активными веществами. С помощью лимфокинов Т-лимфоциты управляют функцией других лейкоцитов. Выделены различные группы лимфокинов. Они могут как стимулировать, так и тормозить миграцию макрофагоцитов т.д. Интерферон, вырабатываемый Т-лимфоцитами, тормозит синтез нуклеиновых кислот и защищает клетку от вирусных инфекций.
    1   2   3   4   5   6   7   8   9   10   ...   14


    написать администратору сайта