Иммунология. иммуналогия отве-1. 1. Понятие об иммунитете. История развития иммунологии. Связь иммунологии
Скачать 1.78 Mb.
|
45.Механизмы противоинфекционного иммунитета Иммунная система человека состоит из центральных (тимус, костный мозг) и периферических (селезенка, л/у) органов и работает как интегрированная защитная система организма, обеспечивая элиминацию инфекционных агентов и длительный протективный иммунитет. Микроорганизмы, окружающие человека ежедневно, у нормального здорового индивидуума только иногда могут быть причиной болезни. Большинство инфекционных агентов распознается и разрушается в течение нескольких часов благодаря защитным механизмам, которые не являются антигенспецифическими и не требуют длительного периода для их индукции. Это механизмы врожденного иммунитета, которые действуют немедленно и являются наиболее ранним ответом на инфекцию. Эта ранняя фаза ответа на инфекцию помогает сохранять ее под контролем до тех пор, пока антигенспецифические лимфоциты активируются. Кроме того, продукция цитокинов в течение этой ранней фазы играет важную роль в последующем развитии специфического иммунного ответа (Т-клеточно-опосредованного или гуморального). В случае, если возбудители проходят эти ранние линии защиты, то запускаются механизмы адаптивного иммунного ответа с развитием антигенспецифических эффекторных клеток, специфически распознающих антиген и лимфоцитов памяти, которые длительно сохраняются в организме и предупреждают развитие инфекции, вызываемой повторным попаданием того же самого патогена. Несколько дней требуется для клональной селекции и дифференцировки нативных лимфоцитов в эффекторные Т-клетки и антитело-продуцирующие плазматические клетки. В течение нескольких дней формируется специфическая иммунологическая память, которая обеспечивает длительную защиту при ре-инфицировании тем же возбудителем . В настоящее время классификация типов иммунитета включает в себя: I. Врожденный иммунитет. II. Приобретенный (адаптивный) иммунитет, который, в свою очередь, разделяется на: 1) естественный приобретенный, возникающий после переболевания за счет сохранения клеток памяти. При повторном заражении тем же возбудителем иммунная система быстро реагирует на него именно за счет лимфоцитов памяти, и заболевание может не развиться; 2) искусственный приобретенный, который подразделяется на: а) пассивный – за счет введения в организм готовых антител (например, трансплацентарно от матери к ребенку или с помощью сывороток и препаратов иммуноглобулинов); этот тип защиты быстрый и эффективный, но сохранятся лишь короткое время; б) активный – достигается с помощью безопасных и эффективных вакцин. Еще в утробе матери и, особенно, с момента рождения нас окружает огромное количество микроорганизмов, которые способны быть причиной заболевания. Однако в процессе эволюционного развития человека выработались определенные механизмы защиты от возбудителей инфекционных болезней. Они являются неотъемлемой составной частью сложной экологической системы -"человек-природа". Существуют защитные факторы организма, которые прямо направлены на борьбу с болезнетворными агентами. Это - иммунная система (специфические факторы защиты). Другие факторы - неспецифические. Они не только защищают нас от инфекций, но и выполняют ряд других функций. Например, сами по себе неповрежденная кожа и слизистые оболочки являются достаточно прочной защитой от многих возбудителей инфекционных заболеваний. В норме существование обычных неболезнетворных микроорганизмов на коже, в кишечнике, в ротовой полости и на слизистых оболочках создает такие условия, которые препятствуют развитию , а следовательно, и вредному воздействию болезнетворных агентов. При нарушении этого равновесия (дисбактериозе) или воздействии большого количества инфекционного агента происходит "прорыв" защитного фактора, что приводит к инфицированию (заражению) и развитию инфекционного процесса. Необходимо сказать и о таких механизмах неспецифической защиты организма приспособительного характера, как обеспечение гибели микроорганизмов при попадании их в кровь, слюну, слезную жидкость за счет наличия в этих средах белковых веществ, повреждающих болезнетворные агенты. Некоторые физиологические акты жизнедеятельности человека, как откашливание мокроты, чихание, мочеиспускание, отшелушивание поверхностного слоя кожи и др., также играют защитную роль, т.к. при этом происходит механическое удаление попавших в организм микробов. Специфическая невосприимчивость к инфекционным болезням обеспечивается деятельностью иммунной системы, представленной постоянно циркулирующими в крови и лимфе клетками (лимфоцитами) и особыми клеточными сообществами - органами, разбросанными по всему телу (лимфатические узлы, миндалины, селезенка, лимфоидные образования в кишечнике и др.). Иммунная система является универсальным механизмом защиты от чужеродных (несвойственных организму человека) белковых, полисахаридных, жировых и коллоидных веществ. Из таких веществ, в частности, состоят и болезнетворные агенты. Эти вещества принято называть антигенами. В ответ на действие антигенов иммунная система вырабатывает антитела - специальные белковые вещества против антигенов. Антитела представлены иммуноглобулинами и вырабатываются лимфоцитами. Важно, что специфичность антител очень высокая, т.е. на определенный антиген образуются только свойственные ему антитела. В случае встречи антигена и антитела происходит блокирование действия первого, что осуществляется сложным опосредованным взаимодействием многих веществ и клеток тканей организма человека. Образование специфических антител против определенного антигена (антигенов) находит свое прикладное применение в основном принципе вакцинации против инфекционных болезней - создание защитного уровня антител против возбудителей инфекций. Наличие антител после перенесенной инфекционной болезни и сохранение их определенное время на достаточном уровне объясняет и иммунитет (невосприимчивость) от этих инфекций на время существования защитных антител. После некоторых инфекций (корь, краснуха, ветряная оспа и др.) повторное заболевание практически невозможно; при других (грипп, псевдотуберкулез,лептоспироз, дизентерия и др.) иммунитет непродолжительный или недостаточный, что находит свое отражение в возможности повторных заболеваний этими инфекциями. Новорожденный ребенок в процессе внутриутробного развития и с грудным молоком после рождения получает от матери ее антитела к инфекциям, с которыми она сталкивалась до беременности и во время вынашивания плода. Количество этих антител со временем уменьшается, однако в большинстве случаев их достаточно для защиты на первом году жизни ребенка. Выявление специфических антител с помощью антигенов (и обратной взаимосвязи) лежит в основе, так называемых, иммунологических реакций, позволяющих диагностировать инфекционные заболевания, что находит очень широкое применение в практической медицине. Говоря об иммунитете, нельзя не сказать еще об одном защитном свойстве уже других клеток крови - нейтрофилов (нейтрофильных гранулоцитов). Это фагоцитоз, т.е. захват, растворение и выведение (переваривание) чужеродных веществ, к которым относятся и возбудители инфекционных болезней. Фагоцитоз в ряде случаев является необходимым для начала выработки антител, т.к. происходит своеобразная подготовка антигена ("дробление" целой микробной клетки на составляющие ее вещества). Кроме того, нейтрофил, "переваривая" целые микробные клетки, уменьшает их количество, а значит и снижает их болезнетворное влияние на организм человека. Анализируя количество нейтрофильных лейкоцитов в периферической крови, можно судить о степени поражения организма больного бактериальным агентом. Специфическая профилактика — одно из наиболее эффективных средств борьбы с инфекционными болезнями. Искусственную невосприимчивость (иммунитет) у человека или животного к инфекционным болезням создают введением в их организм особых препаратов — вакцин (анатоксинов). Специфическая профилактика— это создание искусственного иммунитета путем предохранительных прививок (вакцинации). биотехнология (от греч. bios - - жизнь, teken - - искусство, мастерство, logos -наука, умение, мастерство) . это получение продуктов из биологических объектов или с применением биологических объектов. в качестве биологических объектов могут быть использованы организмы животных и человека (например, получение иммуноглобулинов из сывороток вакцинированных лошадей или людей; получение препаратов крови доноров), отдельные органы (получение гормона инсулина из поджелудочных желез крупного рогатого скота и свиней) или культуры тканей (получение лекарственных препаратов). однако в качестве биологических объектов чаще всего используют одноклеточные микроорганизмы, а также животные и растительные клетки. Для иммунопрофилактики инфекционных болезней разработано несколько типов вакцин. 1. Живые (ослабленные, или аттенуированные) вакцины состоят из жизнеспособных микробов, являющихся возбудителями тех или иных инфекционных болезней человека. Несомненным преимуществом этих вакцин является сохранение полного антигенного набора патогена, благодаря чему достигается наиболее длительное состояние невосприимчивости, по сравнению с результатами использования вакцин других типов. Однако длительность иммунной памяти после применения живых вакцин всё же ниже, нежели после перенесённой инфекционной болезни. Обычно для вакцинации используют штаммы с ослабленной вирулентностью, либо лишённые вирулентных свойств, но полностью сохранившие иммуногенные свойства. Примерами живых вакцин являются таковые против туберкулёза (БЦЖ), брюшного тифа, полиомиелита (Сэбина), жёлтой лихорадки, кори, краснухи, паротита, ветряной оспы. 2. Убитые(инактивированные) вакцины состоят из нежизнеспособных микробов. Для приготовления таких вакцин патогенные микроорганизмы убивают либо термической обработкой, либо воздействием различных химических агентов (например, формалином). В качестве антигенов можно использовать как цельные тела микроорганизмов (противочумная вакцина, вакцина Солка против полиомиелита), так и отдельные компоненты возбудителя (полисахаридная пневмококковая вакцина) и иммунологически активные фракции (вакцина против гепатита В). При использовании таких вакцин нет угрозы возникновения инфекционных болезней, вызванных вакцинным штаммом, однако частота аутоиммунных и токсических осложнений также высока. Длительность иммунной памяти после введения таких вакцинных препаратов несколько ниже, чем при использовании живых вакцин, но довольно велика. 3. Компонентные, или субъединичные вакцины состоят из отдельных антигенов микроорганизмов, способных индуцировать протективный иммунитет, т.е. эффективную иммунную память на определённый срок. Существует 3 типа таких вакцин. Первые состоят из отдельных компонентов морфологических структур патогена (например, полисахариды Streptococcus pneumonie, Neisseria meningitidіs и Haemophilus influenzae; HBs-антиген вируса гепатита В и др.). Вторые представлены анатоксинами – модифицированными токсинами патогенных микроорганизмов, утратившими биологическую активность, но сохранившие иммуногенные свойства (вакцины против дифтерии, столбняка и др.). За счёт таких вакцин достигается не противомикробный, а антитоксический иммунитет. Эти препараты можно использовать для профилактики тех инфекционных болезней, при которых основные клинические симптомы связаны именно с биологическими эффектами экзотоксина возбудителя. И, наконец, субъединичные вакцины третьего типа состоят из двух компонентов – антигенов микроорганизма и анатоксина (например, Haemophilus influenzae и дифтерийный анатоксин). Такие вакцины называются конъюгированными. В таких случаях одновременно формируется как антимикробный, так и антитоксический иммунитет. 4.Генно-инженерные вакцины – это препараты, полученные с помощью биотехнологии, которая по сути сводится к генетической рекомбинации. Для начала получают ген, который должен быть встроен в геном реципиента. Небольшие гены могут быть получены методом химического синтеза. Для этого расшифровывается число и последовательность аминокислот в белковой молекуле вещества, затем по этим данным узнают очерёдность нуклеотидов в гене, далее следует синтез гена химическим путем. Полученный одним из способов целевой ген с помощью ферментов сшивается с другим геном, который используется в качестве вектора для встраивания гибридного гена в клетку. Вектором могут служить плазмиды, бактериофаги, вирусы человека и животных. Экспрессируемый ген встраивается в бактериальную или животную клетку, которая начинает синтезировать несвойственное ей ранее вещество, кодируемое экспрессируемым геном. В качестве реципиентов экспрессируемого гена чаще всего используется E. coli, B. subtilis, псевдомонады, дрожжи, вирусы, некоторые штаммы способны переключаться на синтез чужеродного вещества до 50% своих синтетических возможностей – эти штамм называются суперпродуцентами. |