Ответы к экзаменационным ворпосам. 1 Предмет биологии. Биология
Скачать 1.41 Mb.
|
(13) Особенности генетики человека. Исследование генетики человека связано с большими трудностями, причины которых связаны с невозможностью экспериментального скрещивания, медленной сменой поколений, малым количеством потомков в каждой семье. Кроме того, в отличие от классических объектов, изучаемых в общей генетике, у человека сложный кариотип, большое число групп сцепления. Однако, несмотря на все эти затруднения, генетика человека успешно развивается. Невозможность экспериментального скрещивания компенсируется тем, что исследователь, наблюдая обширную человеческую популяцию, может выбрать из тысяч брачных пар те, которые необходимы для генетического анализа. Метод гибридизации соматических клеток позволяет экспериментально изучать локализацию генов в хромосомах, проводить анализ групп сцепления. При изучении генетики человека используются следующие методы: генеалогический, близнецовый, популяционно-статистический, дерматоглифический, биохимический, цитогенетический, гибридизации соматических клеток и методы моделирования. У человека установлены все 24 теоретически возможные группы сцепления генов; из них 22 локализованы в аутосомах, в каждой из которых содержится по нескольку сот генов. Более 100 генов локализовано в половых хромосомах. У млекопитающих, в том числе и человека, Х-, и Y-хромосомы имеют гомологичный участок, в котором происходит их синапсис и возможен крое-синговер. Все гены, локализованные в половых хромосомах человека, можно разделить на три группы в зависимости от того, в каких участках половых хромосом они находятся. Первая группа — сцепленная с полом. В нее входят гены, локализованные в той части Х-хромосомы, которая не имеет гомологичного участка в Y-хромосоме. Они полностью сцеплены с полом, передаются исключительно через Х-хромосому. К их числу относятся рецессивные гены гемофилии, дальтонизма, атрофии зрительного нерва и др. Доминантные гены из этого участка одинаково проявляются у обоих полов, рецессивные же — у женщин только в гомозиготном, а у мужчин — и в гемизнготном состоянии. Вторую группу составляет небольшое число генов, расположенных в непарном участке Y-хромосомы. Они могут встречаться только у лиц мужского пола и передаются от отца к сыну. К ним относятся: волосатость ушей, ихтиоз (кожа в виде рыбьей чешуи), перепончатые пальцы на ногах. Третья группа — гены, расположенные в парном сегменте половых хромосом, т. е. гомологичном для Х-и У-хромосом. Их называют неполно или частично сцепленными с полом. Они могут передаваться как с Х-, так и с Y-хромосомой и переходить из одной в другую в результате кроссинговера. Методы изучения наследственности у человека. Генеалогический метод.Этот метод основан на прослеживании какого-либо нормального или патологического признака в ряде поколений с указанием родственных связей между членами родословной. Генеалогия в широком смысле слова — родословная человека. Генеалогический метод был введен в науку в конце XIX в. Ф. Гальтоном. Суть его состоит в том, чтобы выяснить родственные связи и проследить наличие нормального или патологического признака среди близких и дальних родственников в данной семье. Сбор сведений начинается от пробанда. Пробандом называется лицо, родословную которого необходимо составить. Им может быть больной или здоровый человек — носитель какого-либо признака или лицо, обратившееся за советом к врачу-генетику. Братья и сестры пробанда называются сибсами. Обычно родословная составляется по одному или нескольким признакам. Метод включает два этапа: сбор сведений о семье и генеалогический анализ. Генеалогический метод является основным связующим звеном между теоретической генетикой человека и применением ее достижений в медицинской практике. Хотя генеалогический метод является одним из самых давних, его возможности далеко не исчерпаны благодаря использованию новых, более совершенных методов анализа фенотипа, выявлению гетерозиготных носителей, учету влияния факторов среды и т. п. Для составления родословной проводят краткие записи о каждом члене родословной с точным указанием его-родства по отношению к пробанду. Затем делают графическое изображение родословной; для составления схемы приняты стандартные символы. Генеалогический метод тем информативнее,- чем больше имеется достоверных сведений о здоровье родственников больного. После составления родословной начинается второй этап — генеалогический анализ, целью которого является установление генетических закономерностей. Вначале требуется установить, имеет ли признак наследственный характер. Если какой-либо признак встречался в родословной несколько раз, то можно думать о его наследственной природе. Однако это может быть и не так. В случае обнаружения наследственного характера признака необходимо установить тип наследования: доминантный, рецессивный, сцепленный с полом. Основные признаки аутосомно-доми-наитного наследования следующие: проявление признака в равной мере у представителей обоих полов, наличие больных во всех поколениях (по вертикали) и при относительно большом количестве сибсов и по горизонтали (у сестер и братьев пробанда). У гетерозиготного родителя вероятность рождения больного ребенка (если второй родитель здоров) составляет 50 %. Следует учесть, что и при доминантном типе наследования может быть пропуск в поколениях за счет слабо выраженных, «стертых» форм заболевания (малая экспрессивность мутантного гена) или за счет его низкой пенетрантности (когда у носителя данного гена признак отсутствует). Основные признаки рецессивного наследования: относительно небольшое число больных в родословной, наличие больных «по горизонтали» (болеют сибсы — родные, двоюродные). Родители больного ребенка чаще фенотипически здоровы, но являются гетерозиготными носителями рецессивного гена. Вероятность рождения больного ребенка составляет 25 %. При проявлении рецессивных заболеваний нередко встречается кровное родство родителей больных. Следует иметь в виду, что наличие отдаленного родства бывает неизвестно членам семьи. Приходится учитывать косвенные соображения, например, происхождение из одного и того же малонаселенного пункта или принадлежность к какой-либо изолированной этнической или социальной группе. Рецессивный признак проявляется тогда, когда в генотипе имеются оба рецессивных аллеля. Кроме описанного варианта, когда родители имеют генотипы Аа и Аа, возможны и другие варианты исходных генотипов. Оба родителя — рецессивные гомозиготы; в этом случае (безусловно, редком) все дети будут больны. Один из родителей болен, а другой — здоров, но имеет в генотипе мутантный ген в гетерозиготном состоянии (аа и Аа). В этом случае наблюдается симуляция доминантного наследования (теоретически возможное расщепление 1:1). Однако наиболее часто наблюдаются варианты рождения больного ребенка у фенотипически нормальных родителей и наличие больных по боковым линиям родословной. Существует тип наследования, сцепленного с полом. Заболевания, обусловленные геном, локализованным в Х-хромосоме, могут быть как доминантными, так и рецессивными. При доминантном Х-сцепленном наследовании заболевание одинаково проявляется как у мужчин, так и у женщин и в дальнейшем может передаваться потомству. В этом случае женщина может передать этот ген половине дочерей и половине сыновей (ее генотип — ХАХа, вероятность передачи Х-хромосомы с доминантным мутантным геном — 50 %). Мужчина же передает этот ген с Х-хромосомой всем дочерям. Понятно, что сыновья, имеющие в генотипе только одну материнскую Х-хромосому, этот ген от отца унаследовать не могут. Примером такого заболевания является особая форма рахита, устойчивого к лечению кальциферолами (вит. D). Близнецовый метод. Это один из наиболее ранних методов изучения генетики человека, однако он не утратил своего значения и в настоящее время. Близнецовый метод был введен Ф. Гальтоном, который выделил среди близнецов две группы: однояйцовые (монозиготные) и двуяйцовые (ди-зиготные). Как правило, у человека рождается один ребенок, но в среднем один случай на 84 новорожденных составляют двойни. Около одной трети их числа — монозиготные близнецы. Они развиваются из разъединившихся бластомеров одной оплодотворенной яйцеклетки и, следовательно, имеют одинаковый генотип. Монозиготные близнецы при нормальном эмбриональном развитии всегда одного пола. Дизиготные близнецы рождаются чаще (2/3 общего количества двоен), они развиваются из двух одновременно созревших и оплодотворенных яйцеклеток. Такие близнецы могут быть и однополые, и разнополые. Если изучаемый пригнан проявляется у обоих близнецов пары, их называют конкчрдаятными (лат. сопсогйаге — быть согласным, сходным). Конкорда нтность — это процент сходства по изучаемому признаку. Отсутствие признака у одного из близнецов — дискордантность. В настоящее время для более точного определения зиготности кроме морфологических признаков используют исследование групп крови (по системе АВО, К,h, MN) и белков плазмы крови. Близнецовый метод используется в генетике человека для того, чтобы оценить степень влияния наследственности и среды на развитие какого-либо нормального или патологического признака. Поскольку у монозиготных близнецов одинаковые генотипы, то имеющееся несходство вызывается условиями среды в период либо внутриутробного развития, либо формирования организма после рождения. Для оценки роли наследственности в развитии того или иного признака производят расчет по формуле: Н= (% сходства ОБ - % сходства ДБ) / (100 - % сходства ДБ). Где Н – коэф.нас-ти, ОБ – однояй.близ., ДБ – двуяй.близ. При Н, равном единице, признак полностью определяется наследственным компонентом; при Н, равном нулю, определяющую роль играет влияние среды. Коэффициент, близкий к 0,5, свидетельствует о примерно одинаковом влиянии наследственности и среды на формирование признака. Метод дерматоглифики.Дерматоглифика (гр. derma — кожа, gliphe — рисовать) — это изучение рельефа кожи на пальцах, ладонях и подошвенных поверхностях стоп. В отличие от других частей тела здесь имеются эпидермальные выступы — гребни, которые образуют сложные узоры. В 1892 г. Ф. Гальтон предложил классификацию этих узоров, позволившую использовать этот метод для идентификации личности в криминалистике. Таким образом, выделился один из разделов дерматоглифики — дактилоскопия (изучение узоров на подушечках пальцев). Другие разделы дерматоглифики — пальмоскопия (рисунки на ладонях) и плантоскопия (изучение дерматоглифики подошвенной поверхности стопы). Дактилоскопия. Гребни на коже пальцев рук соответствуют сосочкам дермы (от лат. papilla — сосочек), поэтому их называют также папиллярными линиями, рельеф этих выступов повторяет пласт эпидермиса. Межсосочковые углубления образуют бороздки. На поверхности гребней открываются выводные протоки потовых желез, а в толще соединительнотканного сосочка находятся чувствительные нервные окончания. Поверхность, покрытая гребневой кожей, отличается высокой тактильной чувствительностью. Дерматоглифические исследования имеют важное значение в определении зиготности близнецов, в диагностике некоторых наследственных заболеваний, в судебной медицине, в криминалистике для идентификации личности. Папиллярные линии на пальцевых подушечках образуют токи различного направления. Узоры обычно изучают на отпечатках, сделанных на бумаге после смазывания кожи типографской краской. Детальное исследование узора проводят с помощью лупы. Папиллярные линии разных токов никогда не пересекаются, но могут сближаться в определенных пунктах, образуя трирадиусы, или дельты. На пальцевых подушечках различают линии центрального узора и линии рамки, которые окаймляют центральный узор. Выдел.3 основ.типа: дуги А (англ. аrch — дуга); петли L (англ. 1оор — петля) и завитковые узоры W (англ. wor1— завиток). Дуговые узоры встречаются реже остальных (6 %), в этом узоре имеется лишь один поток папиллярных линий. Петлевые узоры являются наиболее распространенными (около 60 %). Это замкнутый с одной стороны узор. Петли имеют одну дельту. Если петля открывается в сторону лучевой кости, она называется радиальной, если в сторону локтевой кости,—ульнарной (Lr; Lu). Завитковые узоры занимают среднее место по распространенности (34 %). Они имеют вид концентрических кругов, овалов, спиралей, снизу и сверху центральная часть узора окаймлена двумя потоками линий. Завитки имеют две дельты. Пальмоскопия. Ладонный рельеф очень сложный, в нем выделяют ряд полей, подушечек и ладонных линий. Центральную ладонную ямку окружают шесть возвышений — подушечек. У основания большого пальца — тенар, у противоположного края ладони — гипотенар, против межпальцевых промежутков находятся четыре межпальцевые подушечки. У основания II, III, IV и V пальцев находятся пальцевые трирадиусы – точки, где сходятся три разнонаправленных тока папиллярных линий. У правшей более сложные узоры встречаются на правой руке, у левшей — на левой, У женщин частота завитковых узоров ниже, чем у мужчин, меньше гребневой счет, а частота петлевых и дуговых — выше. На подошвенной поверхности стоп также имеются кожные узоры. Их изучение составляет предмет плантоскопии. Биохимические методы. Эти методы используются для диагностики болезней обмена веществ, причиной которых является изменение активности определенных ферментов. С помощью биохимических методов открыто около 500 молекулярных болезней, являющихся следствием проявления мутантных генов. При различных типах заболеваний удается либо определить сам аномальный белок-фермент, либо промежуточные продукты обмена. Применяют также микробиологические тесты, они основаны на том, что некоторые штаммы бактерий могут расти только на средах, содержащих определенные аминокислоты, углеводы. Удалось получить штаммы по веществам, являющимся субстратами или промежуточными метаболитами у больных при нарушении обмена. Если в крови или моче есть требуемое для роста вещество, то в чашке Петри вокруг фильтровальной бумаги, пропитанной одной из этих жидкостей, наблюдается активное размножение микробов, чего не бывает в случае анализа у здорового человека. Разрабатываются различные варианты микробиологических методов. Популяционно-статистический метод позволяет изучать распространение отдельных генов в человеческих популяциях. Одним из наиболее простых и универсальных математических методов является метод, предложенный Г. Харди и В. Вайнбергом (см. гл. 11). Имеется и ряд других специальных математических методов. В результате становится возможным определить частоту генов в различных группах населения, частоту гетерозиготных носителей ряда наследственных аномалий и болезней. Исследуемые популяции могут различаться по биологическим признакам, географическим условиям жизни, экономическому состоянию. Изучение распространенности генов на определенных территориях показывает, что в этом отношении их можно разделить на две категории: 1) имеющие универсальное распространение (к их числу относится большинство известных генов); примером могут служить рецессивные гены фенилкетоиурии; 2) встречающиеся локально, преимущественно в определенных районах (ген серповидноклеточной анемии). Популяционно-статистический метод позволяет определить генетическую структуру популяций (соотношение между частотой гомозигот и гетерозигот). Новые возможности для проведения генетического анализа открывает применение электронно-вычислительной техники. Знание генетического состава популяций населения имеет большое значение для социальной гигиены и профилактической медицины. Цитогенетическпй метод. Принципы цитогенетических исследований сформировались в течение 20—30-х годов на классическом объекте генетики — дрозофиле и на некоторых расте ниях. Метод основан на микроскопическом исследовании хромосом. Нормальный кариотнп человека включает 46 хромосом, из них 22 пары аутосом и 2 половые хромосомы. Это удалось шведским ученым Д. Тийо и А. Левану. К этому времени в лаборатории успешно производили культивирование клеток человека (клетки костного мозга, культуры фибробластов или лейкоцитов периферической крови, стимулированных к делению фитогемагглютинином). Важнейшая задача состоит в умении различать индивидуальные хромосомы в данной метафазной пластинке. Непосредственно, путем визуального наблюдения под микроскопом это сделать трудно, поэтому обычно делают микрофотографии, а затем вырезают отдельные хромосомы и располагают их в порядке убывающей величины (построение кариограммы). Для идентификации хромосом применяют количественный морфометриче-ский анализ. С этой целью проводят измерение длины хромосомы в микрометрах. Определяют также соотношение длины короткого плеча к длине всей хромосомы (центромерный индекс). В настоящее время разработано несколько методов выявления структурной неоднородности по длине хромосом человека. Основу всех методов составляют произведенные на препаратах процессы денатурации и ренатурации ДНК хромосом. Если после денатурации ДНК, вызванной нагреванием и некоторыми другими факторами, провести затем ее ренатурацию— восстановление исходной двунитчатой структуры, а затем окрасить хромосомы красителем Гимзы, то в них выявляется четкая дифференцировка на темноокра-шенные и светлые полосы — диски. Последовательность расположения этих дисков, их рисунок строго специфичен для каждой хромосомы. В результате различных вариантов метода удается выявить центромерный и околоцентромер ный гетерохроматин (С-диски), диски, расположенные по длине хромосом (собственно Гимзы-диски, G-диски). Если нарушения касаются половых хромосом, то диагностика упрощается. В этом случае проводится не полное кариотипирование, а применяется метод исследования полового хроматина в соматических клетках. Половой хроматин — это небольшое дисковидное тельце, интенсивно окрашивающееся гематоксилином и другими основными красителями. Оно обнаруживается в интерфазных клеточных ядрах млекопитающих и человека, непосредственно под ядерной мембраной. Впоследствии было уточнено, что половой хроматин имеется в большинстве клеточных ядер самок (60—70 %), у самцов его обычно нет, либо встречается очень редко (3—5 %). Половой хроматин можно определить и на мазках крови, в ядрах нейтрофилоцитов эти тельца имеют характерный вид барабанных палочек, отходящих от сложно-дольчатого ядра этих лейкоцитов. В норме у женщин эти структуры обнаруживаются в 3— 7 % нейтрофилоцнтов, а у мужчин они вообще отсутствуют. Методы гибридизации соматических клеток. Соматические клетки содержат весь объем генетической информации. Это дает возможность изучать многие вопросы генетики чело- века, которые невозможно исследовать на целом организме. Благодаря методам генетики соматических клеток человек стал как бы одним из экспериментальных объектов. Соматические клетки человека получают из разных органов (кожа, костный мозг, клетки крови, ткани эмбрионов). Чаще всего используют клетки соединительной ткани (фибробласты) и лимфоциты крови. Культивирование клеток вне организма позволяет получить достаточное количество материала для исследования, что не всегда можно взять у человека без ущерба для здоровья. В 1960 г. французский биолог Ж. Барский, выращивая вне организма в культуре ткани клетки двух линий мышей, обнаружил, что некоторые клетки по своим морфологическим и биохимическим признакам были промежуточными между исходными родительскими клетками. Эти клетки оказались гибридными. Гибридизация соматических клеток проводится в широких пределах не только между разными видами, но и типами: человек х мышь, человек х комар, мышь х курица и т. п. В зависимости от целей анализа исследование проводят на гетерокарионах или синкарионах. Синкарионы обычно удается получить при гибридизации в пределах класса. Это истинные гибридные клетки, так как в них произошло объединение двух геномов. Происходит постепенная элиминация хромосом того организма, клетки которого имеют более медленный темп размножения. Применение метода генетики соматических клеток дает возможность изучать механизмы первичного действия генов и взаимодействия генов. Методы моделирования. Теоретическую основу биологического моделирования в генетике дает закон гомологических рядов наследственной изменчивости, открытый Н. И. Вавиловым, согласно которому генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости. Исходя из этого закона, можно предвидеть, что в пределах класса млекопитающих (и даже за его пределами) можно обнаружить многие мутации, вызывающие такие же изменения фенотипических признаков, как и у человека. Для моделирования определенных наследственных аномалий человека подбирают и изучают мутантные линии животных, имеющих сходные нарушения. Многие мутантные линии животных путем возвратного скрещивания переведены в генетически близкие, в результате получены линии, различающиеся только по аллелям одного ло-куса. Это дает возможность уточнить механизм развития данной аномалии. Безусловно, у человека могут быть свойственные только ему заболевания и в результате взаимодействия генов у человека фенотипический эффект может значительно изменяться. Мутантные линии животных не являются точным воспроизведением наследственных болезней человека. |