Главная страница
Навигация по странице:

  • 23.Геном, кариотип как видовые характеристики. Характеристика кариотипа человека в норме.

  • 24. Геном как эволюционно сложившаяся система генов. Функциональная классификация генов (структурные, регуляторные). Регуляция экспрессии генов у прокариот и эукариот.

  • 25.Геномные мутации, причины и механизмы их возникновения. Классификация и значение геномных мутаций. Геномные болезни человека. Примеры.

  • КОЛЛОКВИУМ 2. 1. Предмет, задачи, методы генетики. История развития генетики. Роль отечественных ученых (Н. К. Кольцов, А. С. Серебровский, С. С. Четвериков) в развитии генетики


    Скачать 408 Kb.
    Название1. Предмет, задачи, методы генетики. История развития генетики. Роль отечественных ученых (Н. К. Кольцов, А. С. Серебровский, С. С. Четвериков) в развитии генетики
    Дата07.11.2022
    Размер408 Kb.
    Формат файлаdoc
    Имя файлаКОЛЛОКВИУМ 2.doc
    ТипДокументы
    #774262
    страница6 из 8
    1   2   3   4   5   6   7   8

    22.Хромосомные мутации, их классификация. Причины и механизмы возникновения хромосомных мутаций. Роль хромосомных мутаций в развитии патологических состояний и эволюционном процессе. Хромосомные болезни человека. Примеры.

    Нарушения структуры хромосом

    Транслокации — обменные перестройки между негомологичными хромосомами.

    Делеции — потери участка хромосомы. Например, синдром «кошачьего крика» связан с делецией короткого плеча 5-ой хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова).

    Инверсии — повороты участка хромосомы на 180 градусов.

    Дупликации — удвоения участка хромосомы.

    Изохромосомия — хромосомы с повторяющимся генетическим материалом в обоих плечах.

    Возникновение кольцевых хромосом — соединение двух концевых делеций в обоих плечах хромосомы.

    Хромосомные мутации (хромосомные абберации) – структурные перестройки, затрагивающие одну или несколько хромосом. При всем многообразии структурных перестроек все они связаны с потерей либо с добавлением участка хромосомы. Частичные моносомии и трисомии (смотри 8 лекцию). На долю хромосомных мутаций приходится 7% хромосомных болезней. Клинически они сопровождаются множественными пороками развития и аномалиями.


    Хромосомные болезни, наследственные заболевания, обусловленные изменением числа или структуры хромосом.

    Эта группа заболеваний обусловлена изменением структуры отдельных хромосом или их количества в кариотипе. Как правило, при таких мутациях наблюдается дисбаланс наследственного материала, который и ведет к нарушению развития организма. У человека описаны геномные мутации по типу полиплоидии, которые редко наблюдаются у живорожденных, а в основном обнаруживаются у абортированных эмбрионов и плодов и у мертворожденных. Основную часть хромосомных болезней составляют анэуплоидии, причем моносомии по аутосомам у живорожденных встречаются крайне редко. Большинство из них касаются 21-й и 22-й хромосом и чаще обнаруживаются у мозаиков, имеющих одновременно клетки с нормальным и мутантным кариотипом. Достаточно редко обнаруживается моносомия и по Х-хромосоме (синдром Шерешевского — Тернера).

    В отличие от моносомии трисомии описаны по большому числу аутосом: 8, 9, 13, 14, 18, 21, 22-й и Х-хромосоме, которая может присутствовать в кариотипе в 4—5 экземплярах, что вполне совместимо с жизнью.

    Структурные перестройки хромосом также, как правило, сопровождаются дисбалансом генетического материала (делеции, дупликации). Степень снижения жизнеспособности при хромосомных аберрациях зависит от количества недостающего или избыточного наследственного материала и от вида измененной хромосомы.

    К настоящему времени описано около 100 клинико-цитогенетических синдромов, в основе которых лежат различные хромосомные аномалии.

    Хромосомные изменения, приводящие к порокам развития, чаще всего привносятся в зиготу с гаметой одного из родителей при оплодотворении. При этом все клетки нового организма будут содержать аномальный хромосомный набор и для диагностики такого заболевания достаточно проанализировать кариотип клеток какой-нибудь ткани.

    Если хромосомные нарушения возникают в одном из бластомеров во время первых делений зиготы, образующейся из нормальных гамет, то развивается мозаичный организм, большая или меньшая часть клеток которого несет нормальный хромосомный набор. Диагностика мозаичных форм хромосомных болезней отличается большей трудоемкостью и требует изучения кариотипа большого числа клеток из разных тканей.

    Для определения вероятности появления хромосомной болезни в потомстве в семьях, уже имеющих больных детей, важно установить, является ли это хромосомное нарушение заново возникшим или оно унаследовано от предыдущего поколения. Чаще родители человека с хромосомным заболеванием имеют нормальный кариотип, а появление больного потомства является результатом мутации, возникшей в одной из гамет. В этом случае возможность повторного хромосомного нарушения у детей в данной семье маловероятна и не превосходит таковой в целом для популяции. Вместе с тем описано немало семей, в которых наблюдается предрасположение, например, к нерасхождению хромосом.

    В случае наследуемых хромосомных болезней в соматических клетках родителей обнаруживаются хромосомные или геномные мутации, которые могут передаваться их зрелым половым клеткам в ходе гаметогенеза. Передают потомству хромосомные нарушения обычно фенотипически нормальные родители, являющиеся носителями сбалансированных хромосомных перестроек — реципрокных транслокаций, робертсоновских транслокаций или перицентрических инверсий. У носителей такого рода хромосомных перестроек с определенной вероятностью образуются нормальные гаметы, а также гаметы, несущие сбалансированную перестройку, и половые клетки с нарушенным балансом генов в геноме (рис. 6.22).

    Возможность наследования хромосомных аномалий делает необходимым анализ кариотипа родителей, уже имеющих больных детей, и пренатальную диагностику развивающегося внутриутробно плода для исключения вероятности повторного рождения ребенка с хромосомной болезнью.

    Фенотипическое проявление различных хромосомных и геномных мутаций характеризуется ранним и множественным поражением различных систем органов. Типичными являются задержка общего физического и умственного развития, отклонения в строении скелета, в частности мозгового и лицевого черепа, пороки развития сердечно-сосудистой, мочеполовой, нервной систем, нарушения в биохимическом, гормональном и иммунологическом статусе организма. Хромосомные болезни, как правило, характеризуются сочетанием многих врожденных пороков. Для них также характерны многообразие и вариабельность фенотипических проявлений. Наиболее специфические проявления хромосомных заболеваний связаны с дисбалансом по относительно небольшому фрагменту хромосомы. Так, фенотипическое проявление синдрома Дауна наблюдается в случае трисомии всего лишь по небольшому сегменту длинного плеча 21-й хромосомы. Картина синдрома «кошачьего крика» развивается при утрате участка короткого плеча 5-й хромосомы. Дисбаланс по значительному объему хромосомного материала делает фенотипическую картину менее специфической.

    Для медицинской практики в 1971 году был проведен симпозиум по медицинской генетике в Париже. Была принята международная Парижская классификация для обозначения кариотипа человека. 46,хх; 46,ху – кариотип нормального человека.

    Во время мейоза возможно появление аномальных половых клеток.

    47,хху – синдром Клайнфельтера.

    Мужчина, частота встречаемости 1 из 1000 новорожденных мальчиков.

    Высокий рост, более длинные ноги, евнуховидное телосложение, недоразвитие половых органов, гинекомастия, у половины умственная отсталость (трудности в обучении чтению и письму), могут заканчивать нормальные школы, хотя им может быть очень трудно. Вспыльчивы, импульсивны, легко попадают од влияние более сильных личностей, преступления и проступки. Жизнеспособность снижена. Среди «туповатых» преступников приблизительно 2%.

    47,хуу – синдром двойного игрек (трисомия)

    1 на 700 новорожденных. Впервые в 1977году были исследованы.

    Высокие мужчины, агрессивное поведение, интеллект снижен или находится на нижней границе нормы. Характерные преступления – поджоги, воровство, детоубийство без мотивации. В больницах закрытого типа, в колонии – 5% таких людей. Поведение детерминировано лишней хромосомой.

    47,ххх – синдром Сверхженщины.

    1на 1000 новорожденных девочек.

    Внешне не проявляется, легкое слабоумие. Считают, что около 1% девушек и женщин с легким слабоумием. Могут беременеть и рождают нормальных детей (во время мейоза происходит самокоррекция).

    45,у0 – нежизнеспособны – аборт.

    45,х0 синдром Шеришевкого-Тернера

    частота встречаемости 1:2000 девочек. Летальность при моносомии очень высокая, каждый 13 выкидыш имеет такую природу. Фенотипические проявления – маленький рост, для многих характерна шейная складка. Локтевой изгиб под углом, укорочены 4 и 5 пальцы, антимонголоидные глаза, абстрактное мышление отсутствует, упорные, трудолюбивые, способны заканчивать школы, ВУЗы. Любовь к опеканию маленьких детей. Отсутствует критическое восприятие своих дефектов. Низкий рост девочки – непременное условие для проведения кариотипирования. Окружность головы больше нормы, груди широко расставлены.

    49,ххххх – нарушения те же, Но встречаемость ниже

    49,хххху – то же.

    Аутосом меньше 44 не бывает, но больше – возможно.

    47,хх+21, 47,ху+21 Синдром Дауна.

    Частота встречаемости 1на 650 новорожденных.

    Фенотипических признаков очень много. Большой язык. Не помещающийся в полости рта, специфический разрез глаз, умственная отсталость и т. д. 12% умственно отсталых детей - Дауны. Частота встречаемости у девочек и мальчиков разных рас примерно одинакова. Чем старше мать, тем выше вероятность рождения ребенка с этой патологией. Каждый 40 ребенок после 40 лет. Не способны к трудовой деятельности, требуют ухода и дорогостоящего лечения.

    47,хх+13,47,ху+13 Синдром Патау.

    1 больной на 7-8 тысяч новорожденных. Новорожденные имеют нормальные вес и рост. Характерны микроцефалия (недоразвитие головного мозга), резкая умственная отсталость, незарощение неба и губы. Полидактилия, повышенная гибкость суставов, недоразвитие глазного яблока, неправильно сформированные, низко посаженные ушные раковины, пороки внутренних органов. Такие дети не живут долго.

    47,хх+18, 47,ху+18 Синдром Эдвардса.

    Частота встречаемости у девочек в 3 раза выше, чем у мальчиков.

    1 больной на 6-7 тысяч новорожденных.

    Характерны множественные аномалии, грубые пороки, характерна грубая задержка роста (гипоплазия в эмбриональном периоде), своеобразный свод черепа, пяткообразно нависающий затылок, короткая шея, расстояние между висками маленькое, ушная раковина деформирована, у половины на затылке избыточная кожа. Продолжительность жизни таких детей снижена. 10% погибают до 1 месяца, 19=0% - до 3 и 30% погибают до года.

    Трисомии могут быть по любой хромосоме. Большей частью по 1 паре аутосом. Чем больше генетического материала, тем хуже. В первую очередь страдает интеллект.

    Клеточный мозаицизм (генетический) – в соматических клетках одного и того же организма имеется разный набор хромосом. Возникает в результате нерасхождения хромосом во время митоза. По наследству не передается. Проявление зависит от соотношения клеток.

    Структурные аномалии хромосом.

    Изохромосомы – разделение хромосомы неправильным путем. Чем больше возраст отца, тем, чаще встречается подобное нарушение.

    46,хх,5р – дилеция плеча5 хромосомы. Синдром Кошачий крик.

    Широко расставленные глаза, физическое недоразвитие. Множественные пороки развития, недоразвита гортань – специфический крик.

    Транслокация – обмен участками хромосом (3 вида).

    Реципроксные (обмен участками между негомологичными хромосомами).

    46,ху, t(9,22) – миелолейкоз (рак крови).

    Нереципроксные (между 2мя гомологичными хромосомами). Может не проявляться.

    Робертсоновские: возникают при нарушениях деления акроцентрических хромосом. Разрыв по центромере, короткие части дегенерируют, длинные срастаются часто по 15 хромосоме.

    46,хх,15t – рак крови. Приводит к ожирению, гипотонии мышц, умственной отсталости. Возможно рождение ребенка – Дауна(5-10% перенос с 21 на 14).

    Инверсия – поворот. Кольцевые хромосомы могут возникать по 16и 18 хромосомам, терминальные концы разрываются. Обозначается – Г. По 18 хромосоме – слабоумие, аномалии лица.

    В результате хромосомных мутаций и аббераций возникает дисбаланс генетического материала, что приводит к психическим и физическим нарушениям развития. Аномалии по крупным хромосомам происходят значительно реже, чем по мелким. Самая маленькая хромосома – 21, нарушения ее строения встречаются чаще всего. Нехватка генетического материала переносится хуже, чем избыток. Если много эухроматина – нежизнеспособность ребенка, если преобладает гетерохроматин – тяжелые патологии (8,13,18,21,х хромосомы).

    23.Геном, кариотип как видовые характеристики. Характеристика кариотипа человека в норме.

    Геномом называют всю совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Геном видоспецифичен, так как представляет собой тот необходимый набор генов, который обеспечивает формирование видовых характеристик организмов в ходе их нормального онтогенеза. Например, у некоторых видов появляются гаплоидные организмы, которые развиваются на основе одинарного набора генов, заключенного в геноме. Так, у ряда видов членистоногих гап-лоидными являются самцы, развивающиеся из неоплодотворенных яйцеклеток.

    Гено́м — совокупность наследственного материала, заключенного в клетке организма.

    Кариотип – диплоидный набор хромосом, характеризующийся совокупностью признаков: число, форма, размер, особенности строения хромосом. Постоянство кариотипа поддерживается механизмам и митоза и мейоза.

    Кариотип — диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определенным числом, строением и генетическим составом хромосом (рис. 3.67). Ниже приведены количества хромосом соматических клеток некоторых видов организмов.

    Если число хромосом в гаплоидном наборе половых клеток обозначить п, то общая формула кариотипа будет выглядеть как 2п, где значение п различно у разных видов. Являясь видовой характеристикой организмов, кариотип может отличаться у отдельных особей некоторыми частными особенностями. Например, у представителей разного пола, имеются в основном одинаковые пары хромосом (аутосомы), но их кариотипы отличаются по одной паре хромосом (гетерохромосомы, или половые хромосомы). Иногда эти различия состоят в разном количестве гетерохромосом у самок и самцов (XX или ХО). Чаще различия касаются строения половых хромосом, обозначаемых разными буквами —X и Y (XX или XY).

    Каждый вид хромосом в кариотипе, содержащий определенный комплекс генов, представлен двумя гомологами, унаследованными от родителей с их половыми клетками. Двойной набор генов, заключенный в кариотипе,— генотип — это уникальное сочетание парных аллелей генома. В генотипе содержится программа развития конкретной особи.

    Идиограмма - (от греч. idios - свой, своеобразный и...грамма), схематическое изображение гаплоидного набора хромосом организма, которые располагают в ряд в соответствии с их размерами. Генофонд — понятие из популяционной генетики, описывающее совокупность всех генных вариаций (аллелей) определённой популяции. Популяция располагает всеми своими аллелями для оптимального приспособления к окружающей среде. Можно также говорить о едином генофонде вида, так как между разными популяциями вида происходит обмен генами.

    24. Геном как эволюционно сложившаяся система генов. Функциональная классификация генов (структурные, регуляторные). Регуляция экспрессии генов у прокариот и эукариот.

    Геном – совокупность генов, характерных для гаплоидного набора хромосом данного вида. При оплодотворении геномы родителей объединяются и образуют клеточный генотип зиготы. Ген – участок молекулы ДНК, который несет информацию о структуре полипептидной цепи или макромолекулы. Гены одной хромосомы располагаются линейно, образую группу сцепления. ДНК в хромосоме выполняет разные функции. Существуют разные последовательности генов, есть последовательности генов, контролирующих экспрессию генов, репликацию и др. Есть гены, содержащие информацию о структуре полипептидной цепи, в конечном счете – структурных белках. Такие последовательности нуклеотидов длинной в один ген, называются структурными генами. Гены, определяющие место, время, длительность включения структурных генов – регуляторные гены. Гены имеют маленький размер, хотя состоят из тысяч пар нуклеотидов. Наличие гена устанавливается по проявлению признака гена (конечному продукту). Общую схему строения генетического аппарата и его работы в 1961 году предложили Жакоб, Моно. Они предложил, что есть участок молекулы ДНК с группой структурных генов. К этой группе примыкает участок в 200пар нуклеотидов – промотор (участок примыкания ДНК зависимой РНК-полимеразы). К этому участку примыкает ген-оператор. Название всей системы – оперон. Регуляция осуществляется регуляторным геном. В итоге белок-репрессор взаимодействует с геном-оператором, и оперон начинает работать. Субстрат взаимодействует с геном регуляторами, оперон блокируется. Принцип обратной связи. Экспрессия оперона включается как единое целое.

    У эукариот экспрессия генов не исследована. Причина – серьезные препятствия:

    -организация генетического материала в форме хромосом

    - у многоклеточных организмов клетки специализированы и поэтому часть генов выключена.

    - наличие гистоновых белков, в то время как у прокариот - «голая» ДНК.

    25.Геномные мутации, причины и механизмы их возникновения. Классификация и значение геномных мутаций. Геномные болезни человека. Примеры.

    Геномные мутации. Полиплоидия – увеличение числа хромосом, кратное диплоидному набору (клетки печени в норме). Анеуплоидия (гетероплоидия)- уменьшение или увеличение количества хромосом не кратное диплоидному. Гаплоидия – наличие гаплоидного набора хромосом в некоторых клетках (как правило, происходит гибель клеток).

    Мутации могут быть полезными, вредными или не оказывать явного влияния – т. е. быть нейтральными. Обычные гены в популяции адаптивны, обладатели лучше приспосабливаются, а вновь возникающие мутации чаще всего уже встречались ранее и были утрачены, потому что не способствовали лучшему приспособлению к определенным условиям жизни. Мутантный ген может накапливаться, может быть полезным. И все же большинство мутаций – вредны.

    При геномных мутациях у организма-мутанта происходит внезапное изменение числа хромосом, кратное целому геному. Если через 2n обозначить число хромосом в исходном диплоидном геноме, то в результате геномной мутации, называемой полиплоидизадией, происходит образование полиплоидных организмов, геном которых представлен 4n, 6n и т. д. хромосомами. Различают аллополиплоидию, в результате которой происходит объединение при гибридизации целых неродственных геномов, и аутополиплоидию, для которой характерно адекватное увеличение числа хромосом собственного генома, кратное 2n.

    Геномные болезни:

    Нерасхождение хромосом при митозе или мейозе

    Утрата хромосомы в анафазе полиплоидия
    1   2   3   4   5   6   7   8


    написать администратору сайта