Главная страница

5fan_ru_Расчет объемного насоса. 1литературный обзор


Скачать 0.99 Mb.
Название1литературный обзор
Дата27.05.2019
Размер0.99 Mb.
Формат файлаdoc
Имя файла5fan_ru_Расчет объемного насоса.doc
ТипРеферат
#79024
страница6 из 7
1   2   3   4   5   6   7



3.3 Подсчет количества рабочих (ремонтников) для выполнения работ, предусмотренных графиком планово-предупредительного ремонта.

Трудоемкость ремонтов приняли согласно /9, табл.1, с.85/.

Количество ремонтов приняли согласно /табл.3.1/.

Общий объем работ по всему оборудованию ,чел-час определили согласно /10, с.15/ по формуле

, (3.2)

.

Количество рабочих-ремонтников определили согласно /10, с.18/ по формуле

, (3.3)

где -эффективный фонд рабочего времени;

-плановый процент выполнения норм выработки.

Эффективный фонд рабочего времени приняли согласно /9, с.34/

=2000 часов.

Плановый процент выполнения норм выработки определили согласно

/9, с.34/

=1,05,

человек.

3.4 Описание технологии монтажа и расчет потребностей в основных монтажных изделиях, материалах, инструменте для монтажа кабельной линии
Монтаж кабельных линий, как и других устройств канализации электрической энергии, выполняется в две стадии: подготовка трасс для прокладки кабелей и прокладка кабелей по подготовленным трассам.

При прокладке кабельных линий необходимо выдержать в соответствии с проектом минимальные расстояния до ближайших зданий, подземных сооружений и различных коммуникаций.

Кабельные линии прокладывают в земле, блоках, на опорных конструкциях и в лотках. При прокладке кабельной линии в земле глубина заложения кабеля должна составлять 0,7 м. Расстояние между кабелем и фундаментами зданий должно быть не менее 0,6 м.

Пр параллельной прокладке нескольких силовых кабелей расстояние между ними должно быть не менее 100 мм, а между силовыми кабелями и кабелями связи 500 мм.

Прокладка кабелей параллельно трубопроводам по вертикали не допускается. Разрешается прокладывать кабели параллельно трубопроводам в горизонтальной плоскости при условии, что расстояние между ними будет не иене 0,5 м. При прокладке кабелей параллельно нефтепроводам и газопроводам расстояние между ними должно быть не менее 1,0 м.

Кабели, находящиеся от трубопроводов на расстояниях меньше указанных, должны быть защищены н всем протяжении асбестоцементными или гончарными трубами.

Кабель, пересекающий теплопровод, должен быть проложен от последнего на расстоянии не иене чем 0,5 м. При этом теплопровод на участке пересечении и на

2 м в каждую сторону от крайних кабелей должен иметь такую изоляцию, при которой температура почвы не будет превышать высшую летнюю температуру более чем на 10 С и низшую змнюю – более чем на 15 С.

При пересечениях с электрифицированными и подлежащими электрификации железными дорогами кабели необходимо прокладывать в изолирующих блоках и трубах. При этом места пересечения должны находится от стрелок, крестовин и мест присоединения к рельсам питающих кабелей трамвайных линий и неэлектрифицированных железных дорог на расстоянии не менее 3 м, а электрифицированных железных дорог не менее 10 м.

Для более надежного предохраненя от возможных механических повреждений кабели прокладывают в кабельных блоках, т.е, сооружениях с каналами для кабелей и относящимися к ним колодцами. Обычно кабельный блок состоит из нескольких асбестоцементных труб, внутренний диаметр которых в 1,5 раза больше диаметра кабеля. Для блочной прокладки кабелей используют гончарные трубы.

Блочные прокладки кабелей существенные недостатки:

- высокую стоимость сооружений и содержания блоков и колодцев;

- невозможность максимального использования сечения токопроводящих жил кабелей по допустимой плотности тока из-за плохих условий охлаждения;

- сложность обслуживания и ремонта кабелей;

Внутри помещений наиболее распространенным способом прокладки кабелей, питающих осветительные и силовые электроустановки промышленных предприятий, является прокладка на опорных конструкциях или лотках.

В одном лотке допускается совместная прокладка кабелей, питающих осветительные нагрузки, с кабелями, питающими силовые нагрузки, но с использованием стальных разделителей или разделительных скоб между ними.

При прокладке кабелей любым из перечисленных способов необходимо выдерживать радиусы их изгибов. Радиус изгиба для многожильного кабеля с бумажной пропитанной изоляцией и алюминиевой или свинцовой оболочке,

бронированного или небронированного должен составлять не менее 15 его наружных диаметров, многожильного кабеля с резиновой изоляцией в свинцовой или поливинилхлоридной оболочке, бронированного – не менее 10, а такого же небронированного кабеля – не менее 6.

Каждая кабельная линия должна быть замаркирована, т.е. кабель должен иметь бирки с номером или названием, прикрепляемые у всех муфт и заделок, а также через каждые 20 м на прямых участках линии. Прямоугольные бирки применяются для маркировки кабелей, рассчитанных на напряжение до 1000 В, а круглые – на напряжение выше 1000 В.

Трасса каждой кабельной линии, проложенной в траншее или в блоках, должна быть нанесена на план с привязкой к зданиям и сооружениям или специально установленным знакам с указанием расположения кабельных муфт.

Работы по монтажу кабельных линий очень трудоемки, и поэтому должны быть максимально механизированы. При прокладке кабелей применяются механизмы и приспособления, которые по назначению можно разделить на две основные группы: механизмы, используемые для земляных работ.

Монтаж кабельных муфт и заделок выполняют с помощью специального инструмента и принадлежностей.

4.1 Современные экологические проблемы в энергетике
Проблемы энергетики

Энергетика - это та отрасль производства, которая развивается невиданно быстрыми темпами. Если численность населения в условиях современного демографического взрыва удваивается за 40-50 лет, то в производстве и потреблении энергии это происходит через каждые 12-15 лет. При таком соотношении темпов роста населения и энергетики, энерговооруженность лавинообразно увеличивается не только в суммарном выражении, но и в расчете на душу населения.

Нет основания ожидать, что темпы производства и потребления энергии в ближайшей перспективе существенно изменятся (некоторое замедление их в промышленно развитых странах компенсируется ростом энерговооруженности стран третьего мира), поэтому важно получить ответы на следующие вопросы:

- какое влияние на биосферу и отдельные ее элементы оказывают основные виды современной (тепловой, водной, атомной) энергетики и как будет изменяться соотношение этих видов в энергетическом балансе в ближайшей и отдаленной перспективе;

- можно ли уменьшить отрицательное воздействие на среду современных (традиционных) методов получения и использования энергии;

- каковы возможности производства энергии за счет альтернативных (нетрадиционных) ресурсов, таких как энергия солнца, ветра, термальных вод и других источников, которые относятся к неисчерпаемым и экологически чистым.

В настоящее время энергетические потребности обеспечиваются в основном за счет трех видов энергоресурсов: органического топлива, воды и атомного ядра. Энергия воды и атомная энергия используются человеком после превращения ее в электрическую энергию. В то же время значительное количество энергии, заключенной в органическом топливе, используется в виде тепловой и только часть ее превращается в электрическую. Однако и в том и в другом случае высвобождение энергии из органического топлива связано с его сжиганием, следовательно, и с поступлением продуктов горения в окружающую среду.

Экологические проблемы тепловой энергетики

За счет сжигания топлива (включая уголь, дрова и другие биоресурсы) в настоящее время производится около 90% энергии. Доля тепловых источников уменьшается до 80-85% в производстве электроэнергии. При этом в промышленно развитых странах нефть и нефтепродукты используются в основном для обеспечения нужд транспорта. Например, в США (данные на 1995 г.) нефть в общем энергобалансе страны составляла 44%, а в получении электроэнергии - только 3%. Для угля характерна противоположная закономерность: при 22% в общем энергобалансе он является основным в получении электроэнергии (52%). В Китае доля угля в получении электроэнергии близка к 75%, в то же время в

России преобладающим источником получения электроэнергии является природный газ (около 40%), а на долю угля приходится только 18% получаемой энергии, доля нефти не превышает 10%.

В мировом масштабе гидроресурсы обеспечивают получение около 5-6% электроэнергии, атомная энергетика, дает 17-18% электроэнергии. Причем в ряде стран она является преобладающей в энергетическом балансе (Франция - 74%, Бельгия -61%, Швеция - 45%).

Сжигание топлива - не только основной источник энергии, но и важнейший поставщик в среду загрязняющих веществ. Тепловые электростанции в наибольшей степени «ответственны» за усиливающийся парниковый эффект и выпадение кислотных осадков. Они, вместе с транспортом, поставляют в атмосферу основную долю техногенного углерода (в основном в виде СО2), около 50% двуокиси серы, 35% - окислов азота и около 35% пыли. Имеются данные, что тепловые электростанции в 2-4 раза сильнее загрязняют среду радиоактивными веществами, чем АЭС такой же мощности.

В выбросах ТЭС содержится значительное количество металлов и их соединений. При пересчете на смертельные дозы в годовых выбросах ТЭС мощностью 1 млн. кВт содержится алюминия и его соединений свыше 100 млн. доз, железа-400 млн. доз, магния -1,5 млн. доз. Летальный эффект этих загрязнителей не проявляется только потому, что они попадают в организмы в незначительных количествах. Это, однако, не исключает их отрицательного влияния через воду, почвы и другие звенья экосистем.

Можно считать, что тепловая энергетика оказывает отрицательное влияние практически на все элементы среды, а также на человека, другие организмы и их сообщества.

Вместе с тем влияние энергетики на среду и ее обитателей в большей мере зависит от вида используемых энергоносителей (топлива). Наиболее чистым топливом является природный газ, далее следует нефть (мазут), каменные угли, бурые угли, сланцы, торф.
Хотя в настоящее время значительная доля электроэнергии производится за счет относительно чистых видов топлива (газ, нефть), однако закономерной является тенденция уменьшения их доли. По имеющимся прогнозам, эти энергоносители потеряют свое ведущее значение уже в первой четверти XXI столетия.

Не исключена вероятность существенного увеличения в мировом энергобалансе использования угля. По имеющимся расчетам, запасы углей таковы, что они могут обеспечивать мировые потребности в энергии в течение 200-300 лет. Возможная добыча углей, с учетом разведанных и прогнозных запасов, оценивается более чем в 7 триллионов тони. Поэтому закономерно ожидать увеличения доли углей или продуктов их переработки (например, газа) в получении энергии, а, следовательно, и в загрязнении среды. Угли содержат от 0,2 до десятков процентов серы в основном в виде пирита, сульфата, закисного железа и гипса. Имеющиеся способы улавливания серы при сжигании топлива далеко не всегда используются из-за сложности и дороговизны. Поэтому значительное количество ее поступает и, по-видимому, будет поступать в ближайшей перспективе в окружающую среду. Серьезные экологические проблемы связаны с твердыми отходами ТЭС - золой и шлаками. Хотя зола в основной массе улавливается различными фильтрами, все же в атмосферу в виде выбросов ТЭС ежегодно поступает около 250 млн. тонн мелкодисперсных аэрозолей. Последние способны заметно изменить баланс солнечной радиации у земной поверхности. Они же являются ядрами конденсации для паров воды и формирования осадков; а, попадая в органы дыхания человека и других организмов, вызывают различные респираторные заболевания.

Выбросы ТЭС являются существенным источником такого сильного канцерогенного вещества, как бензопирен. С его действием связано увеличение онкологических заболеваний. В выбросах угольных ТЭС содержатся также окислы кремния и алюминия. Эти абразивные материалы способны разрушать легочную ткань и вызывать такое заболевание, как силикоз.
Серьезную проблему вблизи ТЭС представляет складирование золы. Для этого требуются значительные территории, которые долгое время не используются, а также являются очагами накопления тяжелых металлов и повышенной радиоактивности.

Имеются данные, что если бы вся сегодняшняя энергетика базировалась на угле, то выбросы СО, составляли бы 20 млрд. тонн в год (сейчас они близки к 6 млрд. т/год). Это тот предел, за которым прогнозируются такие изменения климата, которые обусловят катастрофические последствия для биосферы.

ТЭС - существенный источник подогретых вод, которые используются здесь как охлаждающий агент. Эти воды нередко попадают в реки и другие водоемы, обусловливая их тепловое загрязнение и сопутствующие ему цепные природные реакции (размножение водорослей, потерю кислорода, гибель гидробионтов, превращение типично водных экосистем в болотные и т. п.).

Экологические проблемы гидроэнергетики

Одно из важнейших воздействий гидроэнергетики связано с отчуждением значительных площадей плодородных (пойменных) земель под водохранилища. В России, где за счет использования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоплено не менее 6 млн. га земель. На их месте уничтожены естественные экосистемы. Значительные площади земель вблизи водохранилищ испытывают подтопление в результате повышения уровня грунтовых вод. Эти земли, как правило, переходят в категорию заболоченных. В равнинных условиях подтопленные земли могут составлять 10% и более от затопленных. Уничтожение земель и свойственных им экосистем происходит также в результате их разрушения водой (абразии) при формировании береговой линии. Абразионные процессы обычно продолжаются десятилетиями, имеют следствием переработку больших масс почвогрунтов, загрязнение вод, заиление водохранилищ. Таким образом, со строительством водохранилищ связано резкое нарушение гидрологического режима рек, свойственных им экосистем и видового состава гидробионтов.
Ухудшение качества воды в водохранилищах происходит по различным причинам. В них резко увеличивается количество органических веществ как за счет ушедших под воду экосистем (древесина, другие растительные остатки, гумус почв и т. п.), так и вследствие их накопления в результате замедленного водообмена. Это своего рода отстойники и аккумуляторы веществ, поступающих с водосборов.

В водохранилищах резко усиливается прогревание вод, что интенсифицирует потерю ими кислорода и другие процессы, обусловливаемые тепловым загрязнением. Последнее, совместно с накоплением биогенных веществ, создает условия для зарастания водоемов и интенсивного развития водорослей, в том числе и ядовитых синезеленых (цианей). По этим причинам, а также вследствие медленной обновляемости вод резко снижается их способность к самоочищению. Ухудшение качества воды ведет к гибели многих ее обитателей. Возрастает заболеваемость рыбного стада, особенно поражение гельминтами. Снижаются вкусовые качества обитателей водной среды. Нарушаются пути миграции рыб, идет разрушение кормовых угодий, нерестилищ и т. п.

В конечном счете, перекрытые водохранилищами речные системы из транзитных превращаются в транзитноаккумулятивные. Кроме биогенных веществ, здесь аккумулируются тяжелые металлы, радиоактивные элементы и многие ядохимикаты с длительным периодом жизни. Продукты аккумуляции делают проблематичным возможность использования территорий, занимаемых водохранилищами, после их ликвидации. Имеются данные, что в результате заиления равнинные водохранилища теряют свою ценность как энергетические объекты через 50-100 лет после их строительства. Например, подсчитано, что большая Асуанская плотина, построенная на Ниле в 60-е годы, будет наполовину заилена уже к 2025 году. Несмотря на относительную дешевизну энергии, получаемой за счет гидроресурсов, доля их в энергетическом балансе постепенно уменьшается. Это связано как с исчерпанием наиболее дешевых ресурсов, так и с большой территориальной емкостью равнинных водохранилищ. Считается, что в перспективе мировое производство энергии на ГЭС не будет превышать 5% от общей.

Водохранилища оказывают заметное влияние на атмосферные процессы. Например, в засушливых (аридных) районах, испарение с поверхности водохранилищ превышает испарение с равновеликой поверхности суши в десятки раз. С повышенным испарением связано понижение температуры воздуха, увеличение туманных явлений. Различие тепловых балансов водохранилищ и прилегающей суши обусловливает формирование местных ветров типа бризов. Эти, а также другие явления имеют следствием смену экосистем (не всегда положительную), изменение погоды. В ряде случаев в зоне водохранилищ приходится менять направление сельского хозяйства. Например, в южных частях мира некоторые теплолюбивые культуры (бахчевые) не успевают вызревать, повышается заболеваемость растений, ухудшается качество продукции.

Издержки гидростроительства для среды заметно меньше в горных районах, где водохранилища обычно невелики по площади. Однако в сейсмоопасных горных районах водохранилища могут провоцировать землетрясения. Увеличивается вероятность оползневых явлений и вероятность катастроф в результате возможного разрушения плотин. Так, в 1960 г. в Индии (штат Гунжарат) в результате прорыва плотины вода унесла 15 тысяч жизней людей.

Экологические проблемы ядерной энергетики

Ядерная энергетика до недавнего времени рассматривалась как наиболее перспективная. Это связано как с относительно большими запасами ядерного топлива, так и со щадящим воздействием на среду. К преимуществам относится также возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. Достаточно отметить, что 0,5 кг ядерного топлива позволяет получать столько же энергии, сколько сжигание 1000 тонн каменного угля.

До середины 80-х годов человечество в ядерной энергетике видело один из выходов из энергетического тупика. Только за 20 лет (с середины 60-х до сере-
дины 80-х годов) мировая доля энергетики, получаемой на АЭС, возросла практически с нулевых значений до 15-17%, а в ряде стран она стала превалирующей. Ни один другой вид энергетики не имел таких темпов роста. До недавнего времени основные экологические проблемы АЭС связывались с захоронением отработанного топлива, а также с ликвидацией самих АЭС после окончания допустимых сроков эксплуатации. Имеются данные, что стоимость таких ликвидационных работ составляет от 1/6 до 1/3 от стоимости самих АЭС.

4.2 Охрана окружающей среды на предприятии


Охрана окружающей среды на предприятии характеризуется комплексом принятых мер, которые направлены на предупреждение отрицательного воздействия человеческой деятельности предприятия на окружающую природу, что обеспечивает благоприятные и безопасные условия человеческой жизнедеятельности. Учитывая стремительное развитие научно-технического прогресса, перед человечеством встала сложная задача – охрана важнейших составляющих окружающей среды (земля, вода, воздух), подверженных сильнейшему загрязнению техногенными отходами и выбросами, что приводит к окислению почвы и воды, разрушению озонового слоя земли и климатическим изменениям. Промышленная политика всего мира привела к таким необратимым и существенным изменениям в окружающей среде, что этот вопрос (охрана окружающей среды на предприятии) стал общемировой проблемой и принудил государственные аппараты разработать долгосрочную экологическую политику по созданию внутригосударственного контроля за ПДВ.

Охрана окружающей среды на предприятии определила ряд мероприятий для снижения уровня загрязнений, вырабатываемого

предприятиями:

– Выявление, оценка, постоянный контроль и ограничение выброса вредных элементов в атмосферу, а также создание технологий и техники, охраняющих и сберегающих природу и ее ресурсы;

– Разработка правовых законов, направленных на охранные меры окружающей среды и материальное стимулирование выполненных требований и профилактики комплекса природоохранных мероприятий;

– Профилактика экологической обстановки путем выделения специально отведенных территорий (зон).

Помимо экологической безопасности объекта (охрана окружающей среды на предприятии) не менее важна и безопасность жизнедеятельности (БЖД) на предприятии. В это понятие включен комплекс организационных предприятий и технических средств для предотвращения отрицательного воздействия производственных факторов на человека. Для начала все работники предприятия прослушивают курс по технике безопасности, который инструктирует непосредственный начальник или работник по охране труда. Помимо простой техники безопасности рабочие должны также соблюдать ряд правил по техническим требованиям и нормативам предприятия, а также поддерживать санитарно-гигиенические нормы и микроклимат на рабочем месте.

Все нормы и правила экологической и рабочей безопасности должны быть определены и зафиксированы в определенном документе. Экологический паспорт предприятия – это комплексная статистика данных, отображающих степень пользования данным предприятием природных ресурсов и его уровню загрязнения прилегающих территорий. Экологический паспорт предприятия разрабатывается за счет компании после согласования с соответствующим уполномоченным органом и подвергается постоянной корректировке в связи с перепрофилированием, изменениями в технологии, оборудовании, материалов и т.д.

5.1 Технико – экономический выбор варианта электропривода (электродвигателя) производственных механизмов
Выбор электродвигателя для промышленных механизмов осуществляется с учетом его технико – экономических показателей, а также целесообразности его использования в данной установке. К техническим показателям электродвигателя относятся: номинальная мощность, коэффициент полезного действия электродвигателя, коэффициент мощности, кратности моментов. Эти характеристики непосредственно влияют на процесс производства, так как от них зависит потребление электроэнергии двигателем и как результат – стоимость перемещения единицы груза на транспортной ленте. Чем меньше электроэнергии потребляет электродвигатель, тем выгоднее его применение. От типа электродвигателя также зависит тип и количество различной пускорегулирующей аппаратуры, необходимый для его работы.

Сравнили технические характеристики асинхронных двигателей 4A250S2У3 и АИР250S4, данные занесли в таблицу 5.1

Таблица 5.1 – Технические характеристики сравниваемых электродвигателей



Тип

Номинальная

Мощность

, кВт

КПД

, %

cos







1

4A250S2У3

75

91

0,89

7,5

2,2

1,2

2

АИР250S4

75

90

0,87

7,5

2

1
1   2   3   4   5   6   7


написать администратору сайта