Главная страница
Навигация по странице:

  • Каменные материалы и их поведение в условиях пожара

  • Классификация неорганических вяжущих веществ

  • Каменные искусственные материалы

  • Поведение каменных материалов в условиях пожара

  • Особенности поведения природных каменных материалов в условиях пожара

  • Особенности поведения искусственных каменных материалов при нагревании

  • Древесина, ее пожарная опасность, способы огнезащиты и оценка их эффективности

  • Способы огнезащиты древесины

  • Отделочные и облицовочные материалы

  • Кровельные и гидроизоляционные материалы

  • Теплоизоляционные материалы

  • 1.2 Классификация строительных материалов по группам горючести. 2 Классификация строительных материалов по группам горючести. Огнестойкость зданий и сооружений


    Скачать 64.83 Kb.
    Название2 Классификация строительных материалов по группам горючести. Огнестойкость зданий и сооружений
    Дата08.11.2021
    Размер64.83 Kb.
    Формат файлаdocx
    Имя файла1.2 Классификация строительных материалов по группам горючести. .docx
    ТипЛитература
    #265792
    страница2 из 3
    1   2   3

    Способы повышения стойкости металлов к воздействию пожара

    Обеспечить продление времени сохранения свойств металлов в условиях пожара можно следующими способами:

    - выбором изделий из металлов, более стойких к воздействию пожара;

    - огнезащитой металлоизделий (конструкций) посредством нанесения внешних теплоизоляционных слоев.
    Каменные материалы и их поведение в условиях пожара

    Каменные материалы можно разделить на две большие группы:

    1. Естественные каменные материалы

    2. Искусственные каменные материалы
    Классификация горных пород по происхождению:

    - Изверженные (магматические, первичные) породы: - граниты, габбро, базальты, вулканические пеплы, вулканические туфы, пемзы

    - Осадочные (вторичные) породы - гипс, известковые туфы, известняки, ракушечники, глины, пески, гравий.

    - Метаморфические (видоизмененные) породы: - кварциты, мраморы, глинистые сланцы
    Классификация неорганических вяжущих веществ:

    Воздушные (воздушная известь, гипс).

    Гидравлические (портландцемент, глиноземистый цемент).

    Кислотоупорные (жидкое стекло).
    Каменные искусственные материалы:

    - бетоны и железобетоны;

    - асбестоцемент;

    - гипсовые и гипсобетонные изделия;

    - силикатные изделия.

    - керамика;

    - стекло;

    - шлаки;

    - каменные расплавы.

    - кирпич
    Поведение каменных материалов в условиях пожара

    Изучением поведения каменных материалов в условиях пожара занимались в течении нескольких десятилетий многие исследователи нашей страны.

    Наиболее часто встречающиеся минеральные строительные материалы – это природный камень, бетон, кирпич, керамика, асбоцемент, стекло и т.д. Они относятся к негорючим (НГ), но даже при небольшом добавлении полимерных или органических веществ – не более 5–10% от массы – их свойства меняются. Увеличивается пожарная опасность, и из НГ они переходят в категорию трудносгораемых.

    Характер поведения каменных материалов в условиях пожара в принципе одинаков для всех материалов, отличаются лишь количественные показатели. Специфические особенности обусловлены действием лишь внутренних факторов, присущих анализируемому материалу (при анализе поведения материалов в идентичных условиях действия внешних факторов).
    Особенности поведения природных каменных материалов в условиях пожара

    Мономинеральные горные породы (гипс, известняк, мрамор и др.) при нагреве ведут себя более спокойно, чем полиминеральные. Они претерпевают в начале свободное тепловое расширение, освобождаясь от физически связанной влаги в порах материала. Это не приводит, как правило, к снижению прочности и даже может наблюдаться ее рост при спокойном удалении свободной влаги. Затем в результате действия химических процессов дегидратации (если материал содержит химически связанную влагу) и диссоциации материал претерпевает постепенное разрушение (снижение прочности практически до нуля).

    Полиминеральные горные породы ведут себя в основном аналогично мономинеральным, за исключением того, что при нагреве возникают значительные напряжения, обусловленные различными величинами коэффициентов теплового расширения у компонентов, входящих в состав горной породы. Это приводит к разрушению (снижению прочности) материала.

    Рассмотрим особенности поведения мономинеральных и полиминеральных горных пород при нагреве на примере двух материалов: известняка и гранита.

    Известняк - мономинеральная горная порода, состоящая из минерала кальцита СаСО3. Нагревание кальцита до 600 С не вызывает значительных изменений минерала, а сопровождается лишь его равномерным расширением. Выше 600 С (теоретически температура 910 С) начинается диссоциация кальцита по реакции СаСО3 = СаО + СО2, в результате которой образуются углекислый газ (до 44% по массе от исходного материала) и рыхлый низкопрочный оксид кальция, что вызывает необратимое снижение прочности известняка. При испытании материала при нагреве, а также после нагрева и остывания ненагруженном состоянии было установлено, что при нагревании известняка до 600 С происходит увеличение его прочности на 78% в связи с удалением физически связанной (свободной) влаги из микропор материала. Затем прочность снижается: при 800 оС она достигает первоначальной, а при 1000 С прочность составляет всего 20% от начальной.

    Следует иметь в виду, что в процессе охлаждения большинства материалов после высокотемпературного нагрева продолжается изменение (чаще - снижение) прочности. Снижение прочности известняка до первоначальной происходит после нагрева до 700 оС с последующим остыванием (в горячем состоянии до 800 оС).

    Поскольку процесс диссоциации СаСО3 протекает со значительным поглощением тепла (178,5 кДж/кг), и образующийся при этом пористый оксид кальция обладает малой теплопроводностью, слой СаО создает на поверхности материала теплозащитный барьер, несколько замедляющий дальнейший прогрев известняка вглубь.

    При контакте с водой при тушении пожара (либо влагой из воздуха после остывания материала) происходит повторно реакция гидратации образовавшийся при высокотемпературном нагреве негашеной извести СаО. Причем эта реакция протекает с остывшей известью.

    СаО + Н2О = Са(ОН)2 + 65,1 кДж.

    Образующийся при этом гидроксид кальция увеличивается в объеме и является очень рыхлым и непрочным материалом, который легко разрушается.

    Рассмотрим поведение гранита при нагревании. Поскольку гранит - полиминеральная горная порода, состоящая из полевого шпата, кварца и слюды, его поведение в условиях пожара будет во многом определяться поведением этих компонентов.

    После нагревания гранита до 200С и последующего остывания наблюдается увеличение прочности на 60%, связанное со снятием внутренних напряжений, возникших в период образования гранита в результате неравномерного охлаждения расплавленной магмы, и разницы величины коэффициентов температурного расширения минералов, составляющих гранит

    При температуре выше 200С начинается постепенное снижение прочности, которое объясняется возникновением новых внутренних напряжений, связанных с различием коэффициентов термического расширения минералов.

    Уже значительное снижение прочности гранита наступает выше 575С из-за изменения объема кварца. При этом в граните невооруженным глазом можно обнаружить образование трещин. Однако суммарная прочность гранита в рассмотренном температурном интервале еще остается высокий: при 630С предел прочности гранита равен начальному значению.

    В диапазоне температур 750…800С и выше продолжается снижение прочности гранита. При этом в граните образуются более глубокие трещины. Предел прочности гранита при 800С составляет всего 35% от первоначального значения. Установлено, что скорость прогрева оказывает влияние на изменение на изменение прочности гранита. Так, при быстром (одночасовом) нагреве прочность его начинает снижаться после 200С, в то время как после медленного (восьмичасового) - лишь с 350С.

    Таким образом, можно сделать вывод, что известняк является более стойким к нагреванию материалом, чем гранит. Известняк практически полностью сохраняет свою прочность после нагревания до 700С, гранит - до 630С и последующего остывания. Кроме того, известняк претерпевает значительно меньше температурное расширение, чем гранит. Это важно учитывать при оценке поведения искусственных каменных материалов в условиях пожара, в которые гранит и известняк входят в качестве заполнителей, например, бетона. Также следует учитывать, что после прогрева до высоких температур и последующего остывания природных каменных материалов их прочность не восстанавливается.
    Особенности поведения искусственных каменных материалов при нагревании

    Поскольку бетон является композиционным материалом, его поведение при нагреве зависит от поведения цементного камня, заполнителя и их взаимодействия. Одна из особенностей - химическое соединение при нагреве до 200С гидроксида кальция с кремнеземом кварцевого песка (этому соответствуют условия, аналогичные тем, что создают в автоклаве для быстрого. Все это способствует некоторому повышению прочности.

    При нагреве бетона выше 200С возникают противоположно направленные деформации претерпевающего усадка вяжущего и расширяющегося заполнителя, что снижает прочность бетона.

    При остывании бетона после нагрева прочность, как правило, практически соответствует прочности при той максимальной температуре, до которой образцы были нагреты. У отдельных видов бетона она несколько снижается при остывании за счет более длительного нахождения материала в нагретом состоянии, что способствовало более глубокому протеканию в нем негативных процессов.

    Строительные конструкции из тяжелого бетона (железобетона) склонны к взрывообразному разрушению при пожаре. Чем плотнее бетон, тем ниже его паропроницаемость, больше микропор, тем он более склонен к возникновению такого явления, несмотря на более высокую прочность. Легкие и ячеистые бетоны с объемной массой ниже 1200 кг/м3 не склонны к взрывообразному разрушению.

    Спецификой поведения легких и ячеистых бетонов, в отличие от поведения тяжелых бетонов при пожаре, является более длительное время прогрева вследствие их низкой теплопроводности.
    Древесина, ее пожарная опасность, способы огнезащиты и оценка их эффективности

    -150°С - происходит выделение негорючих продуктов разложения (вода - Н2О, углекислый газ - СО2), что сопровождается изменением цветы древесины (она желтеет).

    -200°С - древесина начинает обугливаться, приобретая коричневую окраску. Газы, выделяющиеся при этом, являются горючими и состоят в основном из окиси углерода - СО, водорода - Н2 и паров органических веществ.

    250-300°С - происходит воспламенение продуктов разложения древесины.

    Способы огнезащиты древесины

    Термоизолирующие одежды (мокрая штукатурка; покрытие негорючими материалами; покрытие вспучивающимися красками);

    Огнезащитные краски (фосфатные покрытия; краска МФК; краска СК-Л);

    Огнезащитные обмазки (суперфосфатная обмазка; известково-глино-солевая обмазка (ИГС));

    Пропиточные составы (глубокая пропитка древесины: раствором антипиренов под давлением; в горячехолодных ваннах).
    Отделочные и облицовочные материалы

    Существует множество отделочных и облицовочных материалов, среди которых можно выделить полистирольные плитки, ПВХ- и ДСП-панели, обои, пленки, керамическую плитку, стеклопластики и т.д. Большинство продукции данного типа относится к горючей. В помещениях с массовым скоплением людей, а также в зданиях, где эвакуация затруднена из-за большой площади и этажности, отделочные материалы могут создавать дополнительную угрозу жизни и здоровью людей, вызывая задымление, выделяя токсичные продукты горения и способствуя быстрому распространению пламени.

    В зависимости от поверхности, на которую они нанесены, отделочные материалы могут иметь различные свойства. К примеру, в сочетании с горючими веществами обычные обои могут проявить себя как легковоспламеняющиеся, а нанесенные на негорючую базу – как слабогорючие. Поэтому при выборе отделочных и облицовочных материалов следует руководствоваться не только данными об их пожарной опасности, но и свойствами оснований.

    Для отделки помещений с большим скоплением людей и путей эвакуации недопустимо использование органических продуктов, в частности, МДФ-панелей, которые чаще всего относятся к группам Г3 и Г4. Для отделки стен и потолков в торговых залах нельзя использовать материалы с более высокой пожарной опасностью, чем класс КМ2.

    Обои на бумажной основе не входят в список продукции, подлежащей обязательной сертификации, и их можно применять в качестве отделочного материала для помещений с повышенными требованиями к пожарной безопасности с учетом того, что основание будет негорючим.

    В качестве замены МДФ-панелям используют гипсокартон с внешним покрытием из декоративной пленки. Благодаря гипсовой основе гипсокартон относится к негорючим материалам, а декоративная пленка на основе полимеров переводит его в группу Г1, что позволяет применять его для отделки помещений практически любого функционального назначения, включая, вестибюли. Сегодня гипсокартон повсеместно применяется для строительства перегородок – самостоятельных строительных конструкций. Это необходимо учитывать при определении их класса пожарной опасности.
    Напольные покрытия

    К горючести напольных покрытий предъявляются менее жесткие требования, чем к отделочным и облицовочным материалам. Причина состоит в том, что при пожаре пол находится в зоне наименьшей температуры по сравнению со стенами и потолком. В то же время, для материалов, служащих в качестве напольного покрытия, важную роль играет такой показатель, как распространение пламени по поверхности (РП).

    Благодаря удобству монтажа и высоким эксплуатационным характеристикам широкое применение в качестве напольных покрытий в коридорах, вестибюлях, холлах и фойе зданий получили линолеумы – различные виды рулонных полимерных покрытий. Практически все материалы такого типа относятся к группе сильно горючих (Г4) и обладают высоким коэффициентом дымообразования. Уже при температуре 300 С они поддерживают горение, а при нагреве свыше 450–600 С – воспламеняются. Кроме того, в продукты горения линолеумов входят токсичные вещества – двуокись углерода, СО и хлористый водород.

    Поэтому их недопустимо использовать в качестве напольного покрытия для коридоров и холлов, где, согласно требованиям, должны применяться материалы не ниже КМ3, не говоря про вестибюли и лестничные клетки, для которых действуют более жесткие требования. То же можно сказать и о ламинате, который состоит из органических и полимерных материалов и, вне зависимости от типа, относится к числу сильно горючих – непригодных для путей эвакуации.

    Наиболее благополучными, с точки зрения пожарной безопасности, являются керамическая плитка и керамогранит. Они относятся к группе КМ0 и не входят в перечень материалов, подлежащих сертификации в области пожарной безопасности. Такая продукция подходит для помещений любого функционального назначения. Кроме того, в качестве напольного покрытия в коридорах и холлах можно использовать полужесткие плитки, изготовленные из поливинилхлорида с большим количеством минерального наполнителя (группа КМ1).
    Кровельные и гидроизоляционные материалы

    Обычно пожароопасность кровельных материалов указана в сертификатах в виде группы горючести. Наименьшей опасностью отличаются кровли из металла и глины, а наибольшей – материалы на основе битумов, каучуков, резинобитумных продуктов и термопластичных полимеров. Хотя именно они придают кровельным материалам высокие эксплуатационные характеристики – водо- и паронепроницаемость, морозостойкость, эластичность, стойкость к негативным атмосферным воздействиям и образованию трещин.

    Одними из наиболее пожароопасных являются кровельные и гидроизоляционные материалы, в состав которых входят битумы. Они самовоспламеняются уже при температуре 230–300 С. Кроме того, битум обладает высокой дымообразующей способностью и скоростью горения.

    Битумы широко применяются в производстве рулонных (рубероид, пергамин, стеклорубероид, изол, гидроизол, фольгоизол) и мастичных кровельных и гидроизоляционных материалов. Практически все кровельные материалы на основе битума относятся к группе Г4. Это накладывает ограничения на их использование в зданиях с повышенными требованиями к пожарной безопасности. Так, они должны укладываться на негорючее основание. Кроме того, поверх осуществляется гравийная засыпка, а также устраиваются противопожарные рассечки, разделяющие кровлю здания на отдельные сегменты. Это необходимо для того, чтобы локализовать возгорание и воспрепятствовать распространению пожара.

    Сегодня на рынке представлены десятки видов гидроизоляционных материалов – полиэтиленовые, полипропиленовые, поливинилхлоридные, полиамидные, тиоколовые и другие мембраны. Вне зависимости от вида, все они относятся к группе горючих. Наиболее благополучными, с точки зрения пожарной безопасности, являются гидроизоляционные мембраны, относящиеся к группе горючести Г2. Как правило, это материалы на основе поливинилхлорида с добавлением антипиренов.
    Теплоизоляционные материалы

    Теплоизоляционные материалы, подлежащие сертификации в области пожарной безопасности, можно разделить на несколько групп. Первая из них – пенополистиролы. Благодаря сравнительно низкой стоимости они получили широкое распространение в современном строительстве. Наряду с хорошими теплоизолирующими свойствами эта продукция обладает рядом серьезных недостатков, в числе которых недолговечность, недостаточная влагостойкость и паропроницаемость, низкая стойкость к воздействию ультрафиолетовых лучей и углеводородных жидкостей, а главное – высокая горючесть и выделение при горении токсичных веществ.

    Воспламенение пенополистиролов происходит при температуре от 220 С до 380 С, а самовоспламенение соответствует температуре 460–480 С. При горении пенополистиролы выделяют большое количество тепла, а также токсичные продукты. Вне зависимости от вида, все материалы данной категории относятся к группе горючести Г4.

    В качестве теплоизоляции в составе штукатурных фасадных систем пенополистирол рекомендуется устанавливать с обязательным устройством противопожарных рассечек из каменной ваты – негорючего материала. Из-за высокой пожарной опасности применение материалов этой группы недопустимо в вентилируемых фасадных системах, так как они могут существенно повысить скорость распространения пламени по фасаду здания. При использовании комбинированных кровельных покрытий пенополистирол укладывается на негорючее основание из каменной ваты.

    Следующий вид теплоизоляционного материала – пенополиуретан – представляет собой неплавкую термореактивную пластмассу с ячеистой структурой, пустоты и поры которой заполнены газом с низкой теплопроводностью. Из-за невысокой температуры воспламенения (от 325 С), сильной дымообразующей способности, а также высокой токсичности продуктов горения, в число которых входит цианистый водород (синильная кислота), пенополиуретан обладает повышенной пожарной опасностью. При производстве пенополиуретана активно применяются антипирены, которые позволяют снизить воспламеняемость, но, вместе с тем, повышают токсичность продуктов горения. В целом, использование пенополиуретана в зданиях с повышенными требованиями к пожарной безопасности должно быть сильно ограничено.

    Резольные пенопласты, изготовленные из резольных фенолформальдегидных смол, относятся к группе трудногорючих. В виде плит средней плотности они применяются для теплоизоляции наружных ограждений, фундаментов и перегородок при температуре поверхности не выше 130 С. Под воздействием пламени резольные пенопласты обугливаются, сохраняя в целом свою форму, и обладают малой дымообразующей способностью по сравнению пенополистиролом. Одним из главных недостатков данной категории материалов является то, что при деструкции они выделяют набор высокотоксичных соединений, в который, помимо угарного газа, входит формальдегид, фенол, аммиак и другие вещества, представляющие непосредственную угрозу жизни и здоровью людей.

    Еще один вид теплоизоляции – стекловата, для производства которой используется те же материалы, что и при изготовлении стекла, а также отходы стекольной промышленности. Стекловата обладает хорошими теплотехническими характеристиками, а температура ее плавления составляет порядка 500 С.

    Каменная вата – один из самых пожаробезопасных теплоизоляционных материалов. Она состоит из волокон, получаемых их каменной породы базальтовой группы. Каменная вата обладает высокими тепло- и звукоизоляционными характеристиками, стойкостью к нагрузкам и различным видам воздействия и долговечностью. Материалы данной группы не выделяют вредных веществ и не оказывают негативного воздействия на окружающую среду. Каменная вата – наиболее надежный материал с точки зрения пожарной безопасности. Волокна каменной ваты способны выдерживать температуру до 1000 C, благодаря чему материал эффективно препятствует распространению пламени. Теплоизоляция из каменной ваты может применяться без ограничения в этажности здания.
    1   2   3


    написать администратору сайта