Главная страница
Навигация по странице:

  • 3.1.8. Вторичный метаболизм

  • 3.1.9. Отношение к факторам окружающей среды

  • 3.1.10. Рост и размножение

  • Мед. Медицинская микробиология, вирусология и иммунология т-1, Звере. 2016 2 Библиография Медицинская микробиология,вирусология и иммунология в 2 т. Том Электронный ресурс


    Скачать 4.99 Mb.
    Название2016 2 Библиография Медицинская микробиология,вирусология и иммунология в 2 т. Том Электронный ресурс
    Дата02.02.2022
    Размер4.99 Mb.
    Формат файлаpdf
    Имя файлаМедицинская микробиология, вирусология и иммунология т-1, Звере.pdf
    ТипУчебник
    #349967
    страница6 из 26
    1   2   3   4   5   6   7   8   9   ...   26
    3.1.7. Морфогенез бактерий и их сообществ
    Построение микробной клетки представляет собой сложный процесс, включающий не только синтез компонентов и деление. Для формирования нормальной клетки необходимо также образование всех структур, расположенных кнаружи от плазматической мембраны, т.е. клеточной стенки, жгутиков, ресничек капсулы и т.п. Морфогенез начинается с синтеза молекул- предшественниц в цитоплазме клеток. Эти молекулы представляют собой компоненты будущих внешних структур. Синтезированные молекулы различными путями переносятся через плазматическую мембрану. Компоненты пептидогликана, например, переносятся за счет фосфотрансферазного пути, некоторые белки - по II типу секреции. Компоненты жгутиков переносятся за счет специальных белков - транслоказ, являющихся компонентами III типа вывода белков из клетки. На поверхности мембраны перенесенные молекулы собираются в блоки, которые, в свою очередь, транспортируются к конечному месту своего расположения и формируют ту или иную внешнюю структуру.
    Все этапы морфогенеза контролируются специфическими транспортными и связующими белками, регулируются различными внешними и внутренними факторами и являются мишенями действия ряда антимикробных препаратов. Кроме компонентов клетки, во внешнюю среду также выносятся органические молекулы, предназначенные для образования внеклеточного матрикса и поверхностной пленки, отделяющей сообщества от внешней среды. Многие стадии морфогенеза регулируются за счет активности связанных с мембраной ферментов, работа которых, в свою очередь, зависит от различных факторов, например температуры. Так, при 30 °С у мезофильных возбудителей болезней человека не образуются полноценные капсулы и капсулоподобные оболочки, реснички, функционально активные молекулы токсинов. Последние могут накапливаться в клетке или периплазме в виде гигантских молекул - протоксинов, у которых не происходит разрезания (ограниченный протеолиз), делающего их функционально активными.
    Синтез самих молекул-предшественников при этом может не изменяться. Интересно, что после возвращения микроба к оптимальной температуре нормальная структура всех компонентов клетки восстанавливается обычно уже через 2-3 ч и микроб вновь становится вирулентным.
    3.1.8. Вторичный метаболизм
    Хотя бактерии и клетки животных имеют в большинстве своем сходные пути промежуточного метаболизма, ряду бактерий свойственны дополнительные реакции, в ходе которых синтезируются различные уникальные соединения. Совокупность подобных реакций получила название «вторичный метаболизм», а полученные в результате вещества - вторичные метаболиты. Наиболее характерными примерами вторичных метаболитов являются антибиотики,

    54 синтезируемые представителями ограниченного числа родов бактерий, включающего Bacillus,
    Streptomyces и Nocardia.
    3.1.9. Отношение к факторам окружающей среды
    Отношение к температуре
    Влияние температуры на бактерии в медицинской микробиологии имеет два основных результата: возможность размножаться и сохранение жизнеспособности. В последнем случае речь идет о возможности восстановления способности к росту и размножению после пребывания при экстремальных температурах (повышенных или пониженных) для данного вида. Температурные условия на Земле различаются в широком диапазоне от 90 до 2500 °С, и всюду встречаются микробы, приспособившиеся к ним. Бактерии, вызывающие болезни людей, максимально адаптированы к температуре тела человека. В то же время некоторые из них могут жить и размножаться в окружающей среде (воде, почве, организмах различных животных), в связи с чем оптимальная температура для их роста может быть ниже или выше 37 °С.
    По отношению к температуре роста бактерии принято разделять на три основные группы: психрофилы, мезофилы и термофилы. Психрофилы живут и размножаются при пониженных температурах (диапозон температур роста от +10 до -20 °С). При этом строгие (облигатные) психрофилы неспособны размножаться при температуре выше 20 °С, а факультативные имеют оптимум роста от 22 до 30 °С. Именно в группе факультативных психрофилов обнаружены возбудители болезней человека (например, возбудитель чумы - Yersinia pestis, иерсиниоза -
    Yersinia enterocolitica, гнойно-воспалительных процессов -Aeromonas spp.). Бактерии, растущие при низких температурах, содержат повышенное количество ненасыщенных жирных кислот и имеют ряд особенностей структуры ферментных белков, что позволяет им расти при низких температурах. Мезофилы включают бактерии, температурный диапазон роста которых находится между 10 и 45 °С, а диапазон оптимальных температур роста лежит между 30 и 40 °С. Именно к этой группе относится большинство возбудителей болезней человека, оптимальный рост которых возможен при 37 °С. Термофилы представляют группу микробов, способных расти при повышенных температурах. Различают термотолерантные формы, для которых оптимальной температурой роста являются 37 °С, но возможность роста, в отличие от мезофилов, сохраняется до 60 °С. Факультативные термофилы проявляют максимальный рост при 50-60 °С, но также растут при 20-40 °С, в то время как облигатные термофилы не могут расти при температуре ниже
    40 °С; оптимальная температура для их размножения 70 °С. Известны также экстремальные
    термофилы, размножающиеся при температуре выше 80 °С. Ряд микробов, являющихся экстремальными термофилами, относятся к доминиону Археи. В строении термофилов одним из важнейших факторов, обеспечивающих термоустойчивость, является структура их белков. Хотя среди термофилов пока не найдены возбудители болезней человека, продукты их жизнедеятельности используются в медицинской промышленности (протеазы, нанесенные на перевязочный материал, для инфицированных ран) и при изготовлении моющих средств
    (ферменты-биодобавки для очистки тканей от органических молекул).
    Сохранение жизнеспособности бактерий при различных температурах зависит от строения клеток. Наиболее устойчивыми следует считать споры, выживающие в широком диапазоне температур - от минусовых до температуры кипящей воды. Вегетативные формы бактерий для выживания в условиях, несколько отличающихся от оптимальных, используют дополнительные индуцибельные генетические программы - системы холодового и теплового шока, относящиеся к так называемым стрессовым системам. Особенности чувствительности бактерий к температуре учитываются при дезинфекции и стерилизации.
    Отношение к кислотности среды
    Одним из важных факторов, определяющих возможности жизни бактерий, является кислотность среды (концентрация ионов водорода). Большинство возбудителей болезней человека

    55 живут при рН среды от 4,0 до 9,0 с оптимумом около 7,0. Вместе с тем известны микробы, предпочитающие щелочную среду рН от 9,0 и выше (алкалофильные бактерии). К их числу можно отнести возбудитель холеры - Vibrio cholera. Некоторые микробы растут только в кислой среде при рН 4,0 и ниже (ацидофильные бактерии). Представители этой группы микроорганизмов используются в пищевой промышленности для получения молочнокислых продуктов. Известны микробы, устойчивые к изменениям рН среды и способные сохранять жизнеспособность как в сильнокислой, так и в сильнощелочной средах. К таким бактериям относятся возбудители туберкулеза, проказы и микобактериозов (Mycobacterium spp), а также актиномицеты и нокардии.
    Отношение к молекулярному кислороду
    Кислород, широко распространенный в природе, находится в свободном и связанном состоянии. В клетках он находится в связанном состоянии в составе воды и органических соединений. В атмосфере он присутствует в свободном состоянии в виде молекулярной формы, объемная доля которого составляет 21%. По отношению к кислороду, а также по использованию его в процессах получения энергии микроорганизмы подразделяются на три группы: облигатные аэробы, облигатные анаэробы, факультативные анаэробы.
    Облигатные аэробы растут и размножаются только в присутствии кислорода, используют кислород для получении энергии путем кислородного дыхания. Энергию получают оксидативным метаболизмом, используя кислород как терминальный акцептор электронов в реакции, катализируемой цитохромоксидазой.
    Облигатные аэробы подразделяются на строгие аэробы, которые растут при парциальном давлении воздуха, и микроаэрофилы, которые, используя кислород в процессах получения энергии, растут при его пониженном парциальном давлении. Это связано с тем, что у микроаэрофилов имеются ферменты, которые инактивируются при контакте с сильными окислителями и активны только при низких значениях парциального давления кислорода, например фермент гидрогеназа.
    Облигатные анаэробы не используют кислород для получения энергии. Тип метаболизма у них бродильный, за исключением метаболизма у двух видов бактерий: Desulfovibrio и Desulfotomaculum,которые относятся к хемолитотрофам и обладают сульфатным дыханием. Облигатные анаэробы подразделяются на две группы: строгие анаэробы и аэротолерантные. Строгие анаэробы характеризуются тем, что молекулярный кислород для них токсичен: он убивает микроорганизмы или ограничивает их рост. Энергию строгие анаэробы получают маслянокислым брожением. К строгим анаэробам относятся, например, некоторые клостридии (C. botulinum, C. tetani), бактероиды.
    Аэротолерантные микроорганизмы не используют кислород для получения энергии, но могут существовать в его атмосфере. К ним относятся молочнокислые бактерии, получающие энергию гетероферментативным молочнокислым брожением.
    Факультативные анаэробы способны расти и размножаться как в присутствии, так и при отсутствии кислорода. Они обладают смешанным типом метаболизма. Процесс получения энергии у них может происходить кислородным дыханием в присутствии кислорода, а при его отсутствии переключаться на брожение. Для этих бактерий характерно наличие анаэробного нитратного дыхания.
    Различное физиологическое отношение микроорганизмов к кислороду связано с наличием у них ферментных систем, позволяющих существовать в атмосфере кислорода. Следует отметить, что в окислительных процессах, протекающих в атмосфере кислорода, при окислении флавопротеидов образуются токсичные продукты: перекись водорода Н
    2
    О
    2
    и закисный радикал кислорода О
    2
    -
    - соединение, имеющее неспаренный электрон. Эти соединения вызывают перекисное окисление ненасыщенных жирных кислот и окисление SH-групп белков.
    Для нейтрализации токсичных форм кислорода микроорганизмы, способные существовать в его атмосфере, имеют защитные механизмы. У облигатных аэробов и факультативных анаэробов

    56 накоплению закисного радикала О
    2
    - препятствует фермент супероксиддисмутаза, расщепляющая закисный радикал на перекись водорода и молекулярный кислород. Перекись водорода у этих бактерий разлагается ферментом каталазой на воду и молекулярный кислород.
    Аэротолерантные микроорганизмы не имеют супероксиддисмутазы, и ее функцию восполняет высокая концентрация ионов марганца, который, окисляясь под действием О
    2
    -
    , убирает тем самым супероксидный ион. Перекись водорода у этих микроорганизмов разрушается ферментом пероксидазой в катализируемых ею реакциях окисления органических веществ.
    Строгие анаэробы не имеют ни каталазы, ни пероксидазы. Однако супероксиддисмутаза встречается у многих строгих анаэробов, и наличие этого фермента коррелирует с их устойчивостью к кислороду. Некоторые строгие анаэробы (роды Bacteroides, Fusobacterium) не выносят присутствия даже незначительного количества молекулярного кислорода, тогда как некоторые представители родаClostridium могут находиться в атмосфере кислорода. Для культивирования строгих анаэробов создаются условия, позволяющие удалять атмосферный кислород: использование специальных приборов, анаэростатов и анаэробных боксов, добавление в питательные среды редуцирующих кислород веществ, например тиогликолята натрия, использование поглотителей кислорода.
    Отношение к излучению
    Важнейшим естественным источником излучения для Земли является солнечная радиация.
    Поверхности Земли достигают преимущественно волны длиной от 300 нм и более, поскольку более короткие волны задерживаются атмосферой. Свет в диапазоне от 300 до 1000 нм, приходящийся в основном на видимый свет, оказывает заметное влияние на жизнь различных прокариотов, включая бактерии - возбудителей болезней человека. Излучение в этом диапазоне индуцирует в бактериальной клетке процессы фотореактивации, необходимые для поддержания постоянства состава ДНК и повышения выживаемости (световая репарация ДНК), а также синтез некоторых макромолекул. В медицине излучение используется для дезинфекции воздуха, различных поверхностей оборудования и материалов. Источником излучения в этом случае являются специальные лампы, получившие название бактерицидных ламп. Бактерицидное действие этих ламп связано с действием коротковолнового излучения от 220 до 300 нм. При этом излучение с длиной волны около 220 нм вызывает ионизацию молекул кислорода с образованием озона (О
    3
    ). Действие коротковолнового излучения в бактериальных клетках приводит к повреждениям ДНК, сопровождающимся или появлением мутаций, или гибелью клеток и изменению и разрушению других органических макромолекул. Среди бактерий наиболее устойчивыми к действию солнечной радиации и обработке ультрафиолетовым (УФ) светом искусственного происхождения являются их споры.
    Радиоактивное излучение в естественных условиях преимущественно связано с излучением горных пород и сильно варьирует в различных географических точках, а также городах и сельской местности. В настоящее время мало известно о роли подобной радиации в изменении свойств бактерий, актуальных для практической медицины. Искусственная радиационная обработка, используемая для лечения ряда заболеваний (прежде всего злокачественных новообразований), может изменять состав нормальной микрофлоры, что требует коррекции для профилактики различных осложнений.
    3.1.10. Рост и размножение
    Рост бактериальных клеток связан с синтезом и накоплением всех компонентов, входящих в ее состав, и увеличением размера, характерного для данного вида. В условиях, обеспечивающих рост микробов, происходит и процесс их деления. Для большинства бактерий характерно поперечное бинарное деление, приводящее к образованию двух дочерних клеток. У грамположительных бактерий при этом происходит синтез перегородки между делящимися клетками. Перегородка начинает формироваться на периферии и «движется» к центру клетки. Для

    57 грамотрицательных бактерий характерно первоначальное формирование перетяжки, отделяющей клетки. После ее образования окончательное разделение дочерних клеток сопровождается синтезом перегородки между ними.
    Деление бактериальной клетки начинается спустя некоторое время после завершения цикла репликации хромосомы, которая у бактерий протекает по полуконсервативному механизму. Это означает, что каждая из двух нитей ДНК хромосомы служит матрицей для синтеза комплементарной дочерней цепи ДНК. В процессе репликации бактериальной хромосомы участвует более 20 ферментов. Перед репликацией цепи родительской молекулы матричной цепи
    ДНК должны быть разделены. В этом процессе участвуют фермент хеликаза, которая в энергопоглощаемой реакции расплетает двойную спираль, и фермент топоизомераза (гираза), которая предотвращает образование вторичных завитков.SSB-белок связывается с одноцепочечной
    ДНК, предотвращая повторное скручивание в двойную спираль. В результате образуется репликативная вилка (рис. 3.5). Синтез новых цепей ДНК осуществляется ферментом ДНК- полимеразой. ДНК-полимераза не способна инициировать новые цепи ДНК, а может присоединять комплементарные матрице нуклеотиды к свободному З'-концу растущей цепи.
    Поэтому для осуществления реакции полимеризации нуклеотидов на матрице родительской цепи полимеразе требуется затравка, праймер (от англ. primer - запал). Праймер представляет собой короткую нуклеотидную цепочку РНК, комплементарную матричной цепи, со свободным 3'- концом. Достраивание осуществляется присоединением к свободной гидроксильной группе 3'- конца затравки нового нуклеотида. Расплетенные цепи ДНК всегда содержат на 5'-конце несколько рибонуклеотидов, т.е. синтез ДНК начинается с синтеза РНК. РНК-затравку для синтеза
    ДНК образует специальный фермент ДНК-праймаза, способная инициировать синтез РНК по одноцепочечной ДНК матрицы при отсутствии какойлибо затравки. После того как цепь ДНК начала синтезироваться, РНК-затравка удаляется, а удаляющиеся бреши застраиваются ДНК- полимеразой с высокой точностью. Сохранение высокой степени точности, необходимой при репликации, обеспечивается различными функциями ДНК-полимеразы.
    Рис. 3.5. Схема репликативной вилки
    Кроме полимеразной активности она способна к проверке считывания. В ходе последней фермент проверяет, правильно ли осуществлено присоединение очередного нуклеотида. Если выявляется нарушение правила комплементарности, проявляется третья функция данного фермента - экзонуклеазная и происходит отщепление неправильно присоединенного нуклеотида.
    После его удаления вновь происходит полимеразная реакция с последующей проверкой ее правильности. В целом в благоприятных условиях синтез ДНК в клетке значительно опережает

    58 скорость ее деления. В реальных условиях одна микробная клетка содержит от 2 до 10 копий хромосом. Показано, что многие бактерии без повреждения клетки выделяют избыток ДНК в окружающую среду. Этот процесс играет важную роль в обмене генетической информацией между бактериями.
    Процесс репликации ДНК бактерии продолжается до тех пор, пока не удвоится вся ДНК.
    Репликация начинается в одной избранной области, называемой origin (от англ. origin - начало), имеющей определенную последовательность нуклеотидов. На origin может возникать одна или две репликативные вилки. Последовательность нуклеотидов на origin-участке способствует необходимому для репликации ДНК расплетанию двойной спирали и служит местом «посадки» на
    ДНК комплекса ферментов, участвующих в репликации. Правильное распределение вновь синтезированных нитей ДНК по дочерним клеткам достигается у бактерий за счет прикрепления
    ДНК к мембране. Пространственная организация участка прикрепления и зоны роста мембраны и клеточной стенки обеспечивает автоматическое растаскивание двух копий реплицированной ДНК по дочерним клеткам. Размножение бактерий бинарным делением приводит к росту числа бактериальных клеток в геометрической прогрессии.
    При внесении бактерий в питательную среду они растут и размножаются до тех пор, пока содержание какого-нибудь из необходимых компонентов среды не достигает минимума, после чего рост и размножение прекращаются. Если на протяжении всего этого времени не прибавлять питательные вещества и не удалять конечные продукты обмена, то получаем статическую
    бактериальную культуру.Статическая (периодическая) культура бактерий ведет себя как многоклеточный организм с генетическим ограничением роста. Если построить график, по оси абсцисс которого отложить время, а по оси ординат - число клеток, то получим кривую, описывающую зависимость числа образующихся клеток от времени размножения, которая называется кривой роста (рис. 3.6).
    На кривой роста бактерий в жидкой питательной среде можно различить несколько фаз, сменяющих друг друга в определенной последовательности.
    • Начальная - лаг-фаза (от англ. lag - отставать), охватывает промежуток времени между инокуляцией (посевом бактерий) и началом размножения. Ее продолжительность в среднем 2-5 ч и зависит от состава питательной среды и возраста засеваемой культуры. Во время лаг-фазы происходит адаптация бактериальных клеток к новым условиям культивирования, идет синтез индуцибельных ферментов.
    • Экспоненциальная (логарифмическая) фаза характеризуется постоянной максимальной скоростью деления клеток. Эта скорость зависит от вида бактерий и питательной среды. Время удвоения клеток называется временем генерации, которое варьирует от вида бактериальной культуры: у бактерий родаPseudomonas оно равняется 14 мин, а у Mycobacterium - 24 ч. Величина клеток и содержание белка в них во время экспоненциальной фазы остаются постоянными.
    Бактериальная культура в этой фазе состоит из стандартных клеток.
    • Стационарная фаза наступает тогда, когда число клеток перестает увеличиваться. Так как скорость роста зависит от концентрации питательных веществ, то при уменьшении содержания последних в питательной среде уменьшается и скорость роста. Снижение скорости роста происходит также из-за большой плотности бактериальных клеток, снижения парциального давления кислорода, накопления токсичных продуктов обмена. Продолжительность стационарной фазы составляет несколько часов и зависит от вида бактерий и особенностей их культивирования.
    • Фаза отмирания наступает вследствие накопления кислых продуктов обмена или в результате аутолиза под влиянием собственных ферментов. Продолжительность этой фазы колеблется от десятка часов до нескольких недель.

    59
    Рис. 3.6. Кривая бактериального роста
    Продолжительность жизни бактерий мало изучена. Известно, что мезофилы на питательной среде при комнатной температуре в условиях, когда размножение бактерий минимально, могут сохранять свою жизнеспособность в течение 1-2 лет. Очевидно, что биологическая смерть бактерий в большей степени связана с ограничением числа возможных делений. Считается, что большинство бактерий могут делиться около 50 раз, после чего клетка погибает. Механизмы гибели остаются не до конца изученными, но показано существование у бактерий генов, изменение активности которых специфически направлено на самоуничтожение клеток.
    Постоянное нахождение бактериальной популяции в логарифмической фазе роста наблюдается в непрерывной культуре, что достигается постепенным дозированием поступления питательных веществ, контролем плотности бактериальной суспензии и удалением метаболитов. Непрерывные бактериальные культуры используются в биотехнологических процессах.
    Накопление бактериальной массы (числа бактерий) при культивировании зависит от многих факторов (качество питательных сред, посевная доза, температура выращивания, рН, наличие активирующих рост добавок и др.).
    На жидких питательных средах рост и размножение бактерий проявляются в виде диффузного помутнения, образования придонного осадка или поверхностной пленки.
    Особенностью размножения бактерий роста Leptospira на жидких средах является отсутствие видимых проявлений роста.
    На плотных питательных средах бактерии образуют скопление клеток - колонии, которые принято считать потомком одной клетки. Колонии различаются формой, размерами, поверхностью, прозрачностью, консистенцией и окраской. Колонии с гладкой блестящей поверхностью принято называть колониями в S-форме (от англ. smooth - гладкий). Колонии с матовой шероховатой поверхностью называют R-формами (от англ. rough - шероховатый).
    Окраска колоний определяется способностью бактерий синтезировать пигменты. Пигменты различаются по цвету, химическому составу и растворимости. Пигменты предохраняют бактериальную клетку от УФ-лучей, обезвреживают токсичные кислородные радикалы, обладают антибиотическими свойствами, принимают участие в реакциях, сопутствующих фотосинтезу в фототрофных бактериях.

    60
    Вид, форма, цвет и другие особенности колоний, а также характер роста на плотных питательных средах определяются как культуральные свойства бактерий и учитываются при их идентификации.
    Помимо бинарного деления, некоторые представители царства Procaryotae имеют иные способы размножения.
    Актиномицеты могут размножаться путем фрагментации гифов. Представители семействаStreptomycetaceae размножаются спорами.
    Микоплазмы являются полиморфными бактериями, что обусловлено особенностями их размножения. Помимо поперечного деления, если оно происходит синхронно с синтезом ДНК, микоплазмы могут размножаться почкованием. В этом случае основной морфологической репродуцирующейся единицей являются элементарные тельца сферической или овоидной формы, размножающиеся фрагментацией и почкованием.
    Хламидии не обладают способностью к бинарному делению. Они проходят через цикл развития, который предусматривает существование двух форм: внеклеточных инфекционных, малых размеровэлементарных телец, не обладающих способностью к бинарному делению, и внутриклеточного, метаболически активного, крупных размеров ретикулярного
    тельца, способного к бинарному делению. В результате бинарного деления ретикулярного тельца формируются дочерние элементарные тельца, которые выделяются из клетки.
    Некоторые спирохеты, например Treponema pallidum, способны образовывать в неблагоприятных условиях цисты, которые, распадаясь на зерна, дают потомство новым бактериальным клеткам.
    Некультивируемые формы бактерий. Некоторые неспорообразующие бактерии способны переживать неблагоприятные для размножения условия окружающей среды, переходя в некультивируемое состояние. В этом состоянии бактериальные клетки сохраняют свою метаболическую активность, но не способны к непрерывному клеточному делению, необходимому для роста на жидких и плотных питательных средах. При смене условий существования, в частности при попадании в организм человека или животных, клетки вновь приобретают способность к размножению и сохраняют свой патогенный потенциал. Переход в некультивируемое (покоящееся) состояние обеспечивает сохранение патогенных бактерий в межэпидемические и межэпизоотические периоды. При переходе в некультивируемую форму бактериальные клетки уменьшаются в размерах, приобретают сферическую форму, меняют вязкость ЦПМ. У них сохраняются транспорт электронов по дыхательной цепи и невысокий уровень метаболической активности. На переход в некультивируемую форму влияют температура, концентрация солей, свет, парциальное давление кислорода, содержание питательных веществ, а также метаболиты водорослей, находящихся в биоценозе с бактериями. Выявить наличие бактерий, находящихся в некультивируемой форме, можно с помощью полимеразной цепной реакции (ПЦР) (см. раздел 5.6.3) или красителей, меняющих окраску в окисленной и восстановленной формах. Возврат способности к размножению и росту находящихся в покоящейся форме клеток могут вызвать естественные факторы: простейшие, обитатели почв и водоемов, фитогормоны, выделяемые корневыми волосками растений.
    1   2   3   4   5   6   7   8   9   ...   26


    написать администратору сайта