Главная страница
Навигация по странице:

  • 3.1.1. Питание бактерий

  • 3.1.2. Ферменты бактерий

  • 3.1.3. Энергетический метаболизм

  • Мед. Медицинская микробиология, вирусология и иммунология т-1, Звере. 2016 2 Библиография Медицинская микробиология,вирусология и иммунология в 2 т. Том Электронный ресурс


    Скачать 4.99 Mb.
    Название2016 2 Библиография Медицинская микробиология,вирусология и иммунология в 2 т. Том Электронный ресурс
    Дата02.02.2022
    Размер4.99 Mb.
    Формат файлаpdf
    Имя файлаМедицинская микробиология, вирусология и иммунология т-1, Звере.pdf
    ТипУчебник
    #349967
    страница4 из 26
    1   2   3   4   5   6   7   8   9   ...   26
    ГЛАВА 3. ФИЗИОЛОГИЯ МИКРОБОВ
    3.1. Физиология бактерий
    Физиология бактерий включает метаболизм бактерий, т.е. питание, получение энергии, рост и размножения бактерий, а также их взаимодействие с окружающей средой. Метаболизм бактерий лежит в основе изучения и разработки методов их культивирования, получения чистых культур и их идентификации. Выяснение физиологии патогенных и условно-патогенных бактерий важно для изучения патогенеза вызываемых ими инфекционных болезней, постановки микробиологического диагноза, лечения и профилактики инфекционных заболеваний, регуляции взаимоотношения человека с окружающей средой, а также для использования бактерий в биотехнологических процессах с целью получения биологически активных веществ.
    3.1.1. Питание бактерий
    Химический состав бактериальной клетки
    Бактериальная клетка на 80-90% состоит из воды и только 10% приходится на долю сухого вещества. Вода в клетке находится в свободном или связанном состоянии. Она выполняет механическую роль в обеспечении тургора, участвует в гидролитических реакциях. Удаление

    40 воды из клетки путем высушивания приводит к приостановке процессов метаболизма, прекращению размножения, а для многих микроорганизмов губительно. В то же время особый способ высушивания микроорганизмов в вакууме из замороженного состояния (лиофилизация) обеспечивает сохранение жизнеспособности большинства микроорганизмов. Лиофилизация используется для приготовления проб, пригодных для длительного хранения.
    В сухом веществе бактерий 52% составляют белки, 17% - углеводы, 9% - липиды, 16% -
    РНК, 3% - ДНК и 3% - минеральные вещества.
    Белки являются ферментами, а также составной частью клетки, входят в состав цитоплазматической мембраны (ЦПМ) и ее производных, клеточной стенки, жгутиков, спор и некоторых капсул. Некоторые бактериальные белки являются антигенами и токсинами бактерий.
    В состав белков бактерий входят отсутствующие у человека D-аминокислоты, а также диаминопимелиновая кислота.
    Углеводы представлены в бактериальной клетке в виде моно-, ди-, олигосахаров и полисахаридов, а также входят в состав комплексных соединений с белками, липидами и другими соединениями. Полисахариды входят в состав некоторых капсул, клеточной стенки; крахмал и гликоген являются запасными питательными веществами. Некоторые полисахариды принимают участие в формировании антигенов.
    Липиды или жиры входят в состав ЦПМ и ее производных, клеточной стенки грамотрицательных бактерий, а также служат запасными веществами, входят в состав эндотоксина грамотрицательных бактерий, в составе ЛПС формируют антигены. В бактериальных жирах преобладают длинноцепочечные (С14-С18) насыщенные жирные кислоты и ненасыщенные жирные кислоты, содержащие одну двойную связь. Сложные липиды представлены фосфатидилинозитом, фосфатидилглицерином и фосфатидилэтаноламином. У некоторых бактерий в клетке находятся воски, эфиры миколовой кислоты. Микоплазмы - единственные представители царства Procaryotae, имеющие в составе ЦПМ стеролы. Остальные бактерии в составе ЦПМ и ее производных не имеют стеролов.
    В бактериальной клетке присутствуют все типы РНК: иРНК, транспортная РНК (тРНК), рРНК, менее известная антисенс РНК (асРНК). Молекулы асРНК пока не обнаружены в клетках эукариот. CD об асРНК записана в хромосоме, в так называемых антисенс-генах. АсРНК принимает активное участие в регуляции различных клеточных процессов, в том числе репликации ДНК бактерий, вирусов, плазмид и танспозонов. асРНК представляет собой короткую молекулу, комплементарную определенному участку иРНК, и, соединяясь с ней, блокирует процесс синтеза белка. При этом в клетке подобные комплексы могут накапливаться, и при диссоциации асРНК и иРНК одновременно начинается синтез белка на большом числе однотипньгх матриц. Искусственные молекулы асРНК пытаются использовать для борьбы с бактериями за счет угнетения ими синтеза в клетке определенных жизненно важных белков.
    Пуриновые и пиримидиновые нуклеотиды - это те строительные блоки, из которых синтезируются нуклеиновые кислоты. Кроме того, пуриновые и пиримидиновые нуклеотиды входят в состав многих коферментов и служат для активации и переноса аминокислот, моносахаров, органических кислот.
    ДНК выполняет в бактериальной клетке наследственную функцию. Молекула ДНК построена из двух полинуклеотидных цепочек. Каждый нуклеотид состоит из азотистого основания, сахара дезоксирибозы и фосфатной группы (рис. 3.1, б). Азотистые основания представлены пуринами (аденин, гуанин) и пиримидинами (тимин, цитозин). Каждый нуклеотид обладает полярностью. У него имеется дезоксирибозный З'-конец и фосфатный 5'-конец.
    Нуклеотиды соединяются в полинуклеотидную цепочку посредством фосфодиэфирных связей между 5'-концом одного нуклеотида и З'-концом другого (рис. 3.1, а). Соединение цепей обеспечивается водородными связями между комплементарными азотистыми основаниями: аденина с тимином, гуанина с цитозином. Нуклеотидные цепи антипараллельны: на каждом из

    41 концов линейной молекулы ДНК расположены 5'-конец одной цепи и З'-конец другой цепи.
    Процентное содержание ГЦ-пар в ДНК определяет степень родства между бактериями и используется при определении таксономического положения бактерий.
    Рис. 3.1. Строение ДНК и ее элементов (объяснение в тексте)
    Минеральные вещества обнаруживаются в золе, полученной после сжигания клеток. В большом количестве представлены N, S, Р, Са, К, Mg, Fe, Mn, а также микроэлементы Zn, Cu, Co,
    Ва.
    Азот входит в состав белков, нуклеотидов, коферментов. Сера входит в виде сульфгидрильных групп в структуру белков. Фосфор в виде фосфатов представлен в нуклеиновых кислотах, АТФ, коферментах. В качестве активаторов ферментов используются ионы Mg, Fe, Mn.
    Ионы К и Mg необходимы для активации рибосом. Са является составной частью клеточной стенки грамположительных бактерий. У многих бактерий имеются сидерохромы, которые обеспечивают транспортировку ионов Fe внутрь клетки в виде растворимых комплексных соединений.
    Классификация бактерий по типам питания и способам получения энергии
    Основной целью метаболизма бактерий является рост, т.е. координированное увеличение всех компонентов клетки. Поскольку основными компонентами бактериальной клетки являются органические соединения, белки, углеводы, нуклеиновые кислоты и липиды, остов которых построен из атомов углерода, то для роста требуется постоянный приток атомов углерода. В зависимости от источника усвояемого углерода бактерии подразделяют на аутотрофы (от греч. autos - сам, trophe -питание), которые используют для построения своих клеток неорганический углерод, в виде СО
    2
    , игетеротрофы (от греч. heteros - другой), которые используют органический углерод. Легкоусвояемыми источниками органического углерода являются гексозы, многоатомные спирты, аминокислоты, липиды.
    Белки, жиры, углеводы и нуклеиновые кислоты являются крупными полимерными молекулами, которые синтезируются из мономеров в реакциях поликонденсации, протекающих с поглощением энергии. Поэтому для восполнения своей биомассы бактериям, помимо источника углерода, требуется источник энергии. Энергия запасается бактериальной клеткой в форме молекул АТФ.

    42
    Организмы, для которых источником энергии является свет, называются фототрофами. Те организмы, которые получают энергию за счет окислительно-восстановительных реакций, называютсяхемотрофами.
    Среди хемотрофов выделяют литотрофы (от греч. lithos
    - камень), способные использовать неорганические доноры электронов

    2
    ,
    NH
    3
    ,
    H
    2
    S,
    Fe
    2+ и др.) и органотрофы, которые используют в качестве доноров электронов органические соединения.
    Бактерии, изучаемые медицинской микробиологией, являются гетерохемоорганотрофами.Отличительной особенностью этой группы является то, что источник углерода у них является источником энергии. Учитывая разнообразие микромира и типов метаболизма, далее изложение материала ограничено рассмотрением метаболизма у гетерохемоорганотрофов.
    Степень гетеротрофности у различных бактерий неодинакова. Среди бактерий выделяют сапрофиты (от греч. sapros - гнилой, phyton - растение), которые питаются мертвым органическим материалом и независимы от других организмов, и паразиты (от греч. parasites -
    нахлебник) - гетеротрофные микроорганизмы, получающие питательные вещества от макроорганизма.
    Среди паразитов различают облигатные и факультативные. Облигатные паразиты полностью лишены возможности жить вне клеток макроорганизма. К ним относятся представители родов Rickettsia, Coxiella, Ehrlichia, Chlamydia и др., размножающиеся только внутри клеток макроорганизма. Факультативныепаразиты могут жить и без хозяина и размножаться, так же как и сапрофиты, на питательных средах in vitro, т.е. вне организма.
    Культивирование бактерий в системах in vitro осуществляется на питательных средах.
    Искусственные питательные среды должны отвечать следующим требованиям.
    • Каждая питательная среда должна содержать воду, так как все процессы жизнедеятельности бактерий протекают в воде.
    • Для культивирования гетероорганотрофных бактерий в среде должен содержаться органический источник углерода и энергии. Эту функцию выполняют различные органические соединения: углеводы, аминокислоты, органические кислоты, липиды. Наибольшим энергетическим потенциалом обладает глюкоза, так как она непосредственно подвергается расщеплению с образованием АТФ и ингредиентов для биосинтетических путей. Часто используется в этих целях пептон - продукт неполного гидролиза белков, состоящий из поли-, олиго- и дипептидов. Пептон также поставляет аминокислоты для построения бактериальных белков.
    • Для синтеза белков, нуклеотидов, АТФ, коферментов бактериям требуются источники азота, серы, фосфаты и другие минеральные вещества, в том числе микроэлементы. Источником азота может служить пептон; кроме того, большинство бактерий способны использовать соли аммония в качестве источника азота. Серу и фосфор бактерии способны утилизировать в виде неорганических солей: сульфатов и фосфатов. Для нормального функционирования ферментов бактериям требуются ионы Са
    2+
    , Mg
    2+
    , Mn
    2+
    , Fe
    2+
    , которые добавляют в питательную среду в виде солей, чаще всего фосфатов.
    • Решающее значение для роста многих микроорганизмов имеет рН среды.
    Поддерживание определенного рН имеет значение для предотвращения гибели микроорганизмов от ими же образованных продуктов обмена.
    • Среда должна обладать определенным осмотическим давлением. Большинство бактерий способны расти на изотоничных средах, изотоничность которых достигается добавлением NaCl в концентрации 0,87%. Некоторые бактерии не способны расти на средах при концентрации соли в них ниже 1%. Такие бактерии называются галофильными. Так как устойчивость к осмотическому давлению определяется наличием у бактерий клеточной стенки, бактерии, лишенные клеточной

    43 стенки, микоплазмы L-формы, могут расти на питательных средах, содержащих гипертонический раствор, обычно сахарозы. При необходимости к питательной среде добавляют факторы роста, ингибиторы роста определенных бактерий, субстраты для действия ферментов, индикаторы.
    • Питательные среды должны быть стерильными.
    В зависимости от консистенции питательные среды могут быть жидкими, полужидкими и плотными. Плотность среды достигается добавлением агара.
    Агар - полисахарид, получаемый из водорослей. Он плавится при температуре 100 °С, но при охлаждении остывает при температуре 45-50 °С. Агар добавляют в концентрации 0,5% для полужидких сред и 1,5-2% для создания плотных сред. В зависимости от состава и цели применения различают простые, сложные, элективные, минимальные, дифференциально- диагностические и комбинированные среды.
    По составу питательные среды могут быть простыми и сложными. К простым
    средам относятся пептонная вода, питательный бульон, мясопептонный агар. На основе простых сред готовят сложные среды, например сахарный и сывороточный бульоны, кровяной агар.
    В зависимости от назначения среды подразделяются на элективные, обогащения, дифференциально-диагностические. Под элективными понимают среды, на которых лучше растет какой-то определенный микроорганизм. Например, щелочной агар, имеющий рН 9,0, служит для выделения холерного вибриона. Другие бактерии, в частности кишечная палочка, из-за высокого рН на этой среде не растут.
    Среды обогащения - это среды, которые стимулируют рост какого-то определенного микроорганизма, ингибируя рост других. Например, среда, содержащая селенит натрия, стимулирует рост бактерий родаSalmonella, ингибируя рост кишечной палочки.
    Дифференциально-диагностические среды служат для изучения ферментативной активности бактерий. Они состоят из простой питательной среды с добавлением субстрата, на который должен подействовать фермент, и индикатора, меняющего свой цвет в результате ферментативного превращения субстрата. Примером таких сред являются среды Гисса, используемые для изучения способности бактерий ферментировать сахара.
    Комбинированные питательные среды сочетают в себе элективную среду, подавляющую рост сопутствующей флоры, и дифференциальную среду, диагностирующую ферментативную активность выделяемого микроба. Примером таких сред служат среда Плоскирева и висмут- сульфитный агар, используемые при выделении патогенных кишечных бактерий. Обе эти среды ингибируют рост кишечной палочки.
    3.1.2. Ферменты бактерий
    В основе всех метаболических реакций в бактериальной клетке лежит деятельность ферментов, которые принадлежат к 6 классам: оксиредуктазы, трансферазы, гидролазы, лигазы, лиазы, изомеразы. Ферменты, образуемые бактериальной клеткой, могут как локализоваться внутри клетки
    -эндоферменты, так и выделяться в окружающую среду
    -
    экзоферменты. Экзоферменты играют большую роль в обеспечении бактериальной клетки доступными для проникновения внутрь источниками углерода и энергии. Большинство гидролаз являются экзоферментами, которые, выделяясь в окружающую среду, расщепляют крупные молекулы пептидов, полисахаридов, липидов до мономеров и димеров, способных проникнуть внутрь клетки. Ряд экзоферментов, например гиалуронидаза, коллагеназа, являются ферментами агрессии. Некоторые ферменты локализованы в периплазматическом пространстве бактериальной клетки. Они участвуют в процессах переноса веществ в бактериальную клетку. Ферментативный спектр является таксономическим признаком, характерным для семейства, рода и в некоторых случаях для видов. Поэтому определением спектра ферментативной активности пользуются при установлении таксономического положения бактерий. Наличие экзоферментов можно определить

    44 при помощи дифференциально-диагностических сред. Для идентификации бактерий разработаны специальные тест-системы, состоящие из набора дифференциально-диагностических сред.
    3.1.3. Энергетический метаболизм
    Энергия в бактериальной клетке накапливается в форме молекул АТФ. У хемоорганотрофных бактерий реакции, связанные с получением энергии в форме АТФ, - это реакции окисления- восстановления, сопряженные с реакциями фосфорилирования. Окисленный в этих реакциях углерод выделяется клеткой в виде СО
    2
    . Для удаления отщепившегося в этих реакциях водорода, который находится в форме восстановленного НАД, разные бактерии используют различные возможности в зависимости от конечного акцептора водорода (или электронов, что является эквивалентным понятием). В зависимости от способа получения энергии у бактерий имеется несколько типов метаболизма: окислительный, или дыхание; бродильный, или ферментативный; смешанный. Тип метаболизма определяет не только реакции, в результате которых образуется АТФ, но и конечные продукты этих реакций, которые используются при идентификации бактерий, а также условия культивирования бактерий.
    При использовании в качестве источника углерода и энергии глюкозы или других гексоз начальные этапы окисления глюкозы являются общими, как при оксидативном, так и при бродильном метаболизме. К ним относятся пути превращения глюкозы в пируват (при использовании в качестве источника энергии отличных от глюкозы гексоз, или дисахаридов, они в результате химических превращений вступают в цепь реакций, превращающих глюкозу в пируват). Пируват, образовавшийся при расщеплении глюкозы, превращается при участии кофакторов в активированную уксусную кислоту или ацетилкоэнзим А. Последний окисляется в
    СО
    2
    с отщеплением водорода в цикле трикарбоновых кислот.
    Цикл трикарбоновых кислот не только выполняет функцию конечного окисления питательных веществ, но и обеспечивает процессы биосинтеза многочисленными предшественниками: пируват α-кетоглутаровая, щавелевая и янтарные кислоты - для синтеза аминокислот, щавелевоуксусная - для синтеза пиримидиновых нуклеотидов, малонат - для синтеза аминокислот, пиримидиновых нуклеотидов и жиров (рис. 3.2).
    Окислительный метаболизм. Бактерии, обладающие окислительным метаболизмом, энергию получают путем дыхания. Дыхание - процесс получения энергии в реакциях окисления- восстановления, сопряженных с реакциями окислительного фосфорилирования, при котором донорами электронов могут быть органические (у органотрофов) и неорганические (у литотрофов) соединения, а акцептором - только неорганические соединения.

    45
    Рис. 3.2. Схема обмена веществ у бактерий
    У бактерий, обладающих окислительным метаболизмом, акцептором электронов (или водорода [Н
    +
    ]) является молекулярный кислород. В этом случае пируват полностью окисляется в цикле трикарбоновых кислот до СО
    2
    . Цикл трикарбоновых кислот выполняет функции поставщика как предшественников для биосинтетических процессов, так и атомов водорода, который в форме восстановленного НАД переносится на молекулярный кислород через серию переносчиков, обладающих сложной структурно оформленной мультиферментной системой -
    дыхательной цепью. Дыхательная цепь у бактерий локализована в ЦПМ и во внутриклеточных мембранных структурах.
    Электрохимическую энергию бактерии получают в процессе переноса электронов по окислительно-восстановительным цепям в мембране, в результате чего происходит неравномерное распределение Н
    +
    по обеим ее сторонам. Переносчики электронов располагаются в мембране таким образом, что во внешней среде происходит накопление ионов водорода (при этом возникает подкисление среды), а в цитоплазме их число уменьшается, что сопровождается подщелачиванием среды. Неравномерное распределение положительно заряженных протонов (большее число на наружной и меньшее на внутренней поверхности плазматической мембраны) приводит к формированию расположенного поперек мембраны электрического поля, мембранного потенциала.
    В результате при переносе электронов возникает трансмембранный электрохимический градиент ионов водорода, обозначаемый символом ΔμΗ
    +
    и измеряемый в вольтах. Энергия мембранного потенциала используется для синтеза локализованной в мембране
    АТФазой АТФ.
    Энергия в форме ΔμΗ
    +
    не теряется при ее запасании и может образовываться и потребляться клеткой в условиях, когда невозможен синтез АТФ. В последние годы показано, что аналогичным образом перераспределяются и атомы Na
    +
    с образованием энергии, обозначаемой как ΔμNa
    +
    . Данные формы энергии тратятся преимущественно на движение бактерий (у подвижных форм) и транспорт веществ в клетку и из нее.
    Типичная цепь выглядит следующим образом: ЦТК → НАД(Н
    2
    ) → флавопротеид → хинон
    → цитохромы: b c a → О
    2
    Конечным этапом переноса электронов (протонов) по дыхательной цепи является восстановление цитохромов а + а
    3
    (цитохромоксидазы). Цитохромоксидаза является конечной оксидазой, передающей электроны на кислород. Образующиеся при окислении ФАД или хинонов протоны связываются ионами О
    2- с образованием воды.

    46
    В то время как у эукариотов ферменты дыхательной цепи имеют относительно постоянный состав, у бактерий встречаются вариации в составе дыхательной цепи. У некоторых бактерий цитохромы отсутствуют и при контакте с кислородом происходит непосредственный перенос водорода на кислород с помощью флавопротеидов, конечным продуктом при этом оказывается перекись водорода (Н
    2
    О
    2
    ).
    Помимо углеводов, прокариоты способны использовать другие органические соединения, в частности белки, в качестве источника энергии, окисляя их полностью до СО
    2
    и Н
    2
    О.
    Аминокислоты и белки также могут выступать в качестве энергетических ресурсов. Их использование связано в первую очередь с определенными ферментативными преобразованиями подготовительного характера. Белки вначале вне клетки расщепляются протеолитическими ферментами на пептиды, которые поглощаются клеткой и расщепляются внутриклеточными пептидазами до аминокислот. Аминокислоты могут использоваться в конструктивном метаболизме, а могут у аммонифицирующих бактерий служить основным материалом в энергетических процессах при окислительном дезаминировании, в результате которого происходят выделение аммиака и превращение аминокислоты в кетокислоту, которая через цикл трикарбоновых кислот вступает в конструктивный метаболизм.
    Процесс аммонификации известен как гниение, при этом происходит накопление продуктов, обладающих неприятным специфическим запахом образующихся при этом первичных аминов. Гнилостные бактерии осуществляют минерализацию белка, разлагая его до СО
    2
    , NH
    3
    ,
    H
    2
    S. К гнилостным бактериям относятся Proteus, Pseudomonas, Bacillus cereus.
    Анаэробное дыхание. Некоторые бактерии обладают способностью использовать в анаэробных условиях нитрат как конечный акцептор водорода. Восстановление нитрата может происходить двумя путями: аммонификацией, при которой нитрат превращается в аммиак, и денитрофикацией, при которой происходит восстановление нитрата до молекулярного азота или закиси азота. Этот процесс связан с деятельностью фермента нитратредуктазы.
    Сульфатное дыхание. Использовать сульфат как конечный акцептор водорода при анаэробном дыхании способна лишь небольшая группа бактерий, включающая только два рода: Desulfovibrio, Desulfotomaculum.Эти бактерии являются строгими анаэробами, они обитают в сероводородном иле и не имеют значения в медицинской микробиологии. Они способны использовать в качестве донора электронов молекулярный водород, поэтому их относят к хемолитотрофам. Этим бактериям принадлежит ведущая роль в образовании сероводорода в природе.
    Бродильный (ферментативный) метаболизм. Ферментация, или брожение, - процесс получения энергии, при котором отщепленный от субстрата водород переносится на органические соединения. Кислород в процессе брожения участия не принимает. Восстановленные органические соединения выделяются в питательную среду и накапливаются в ней.
    Ферментироваться могут углеводы, аминокислоты (за исключением ароматических), пурины, пиримидины, многоатомные спирты. Не способны сбраживаться ароматические углеводороды, стероиды, каротиноиды, жирные кислоты. Эти вещества разлагаются и окисляются только в присутствии кислорода, в анаэробных условиях они стабильны. Продуктами брожения являются кислоты, газы, спирты.
    При ферментации гексоз (глюкозы) пируват лишь частично окисляется в цикле трикарбоновых кислот. Последний выполняет только функции поставщика предшественников для биосинтетических процессов. Энергия в форме двух молекул АТФ образуется в результате субстратного фосфорилирования, протекающего при окислении триозофосфата в пируват.
    Отщепившийся от субстрата водород, находящийся в форме восстановленного НАД, переносится на пируват, превращая его в цепи реакций в этанол, кислоты, газы. Исходя из природы конечных продуктов, различают несколько типов брожения углеводов: спиртовое, молочнокислое, муравьинокислое, маслянокислое.

    47
    Спиртовое брожение встречается в основном у дрожжей. Конечными продуктами являются этанол и СО
    2
    . Спиртовое брожение используется в хлебопекарной промышленности и виноделии.
    Молочнокислое брожение происходит у S. pyogenes, E. faecalis, S. Salivarius, а также у бактерий родовLactobacillus и Bifidobacterium. Продуктами этого типа брожения являются молочная кислота, этанол и уксусная кислота. Продукты молочнокислого брожения играют большую роль в формировании колонизационной резистентности бактериями рода Lactobacillus и Bifidobacterium, составляющих облигатную флору кишечника.
    Молочнокислые бактерии широко используются в молочной промышленности для получения молочнокислых продуктов, а также в создании пробиотиков.
    Муравьинокислое
    (смешанное)
    брожение встречается у представителей семейств Enterobacteriaceae иVibrionaceae. Различают два типа этого брожения. При первом происходит расщепление пирувата с образованием через цепь реакций муравьиной, янтарной и молочной кислот. Сильное кислотообразование можно выявить реакцией с индикатором метиленовым красным, который меняет окраску в сильнокислой среде. При втором типе брожения образуется целый ряд кислот, однако главным продуктом брожения являются ацетоин и 2,3- бутандиол, образующиеся через цепь реакций из двух молекул пирувата. Эти вещества при взаимодействии с α-нафтолом в щелочной среде вызывают образование окраски бурого цвета, что выявляется реакцией Фогеса-Проскауэра, используемой при идентификации бактерий.
    Маслянокислое брожение. Масляная кислота, бутанол, ацетон, изопропанол и ряд других органических кислот, в частности уксусная, капроновая, валериановая, пальмитиновая, являются продуктами сбраживания углеводов сахаролитическими строгими анаэробами. Спектр этих кислот, определяемый при помощи газожидкостной хроматографии, используется как экспресс- метод при идентификации анаэробов.
    Ферментация белков. Если для бактерий с бродильным метаболизмом источником энергии служат белки, то такие бактерии называются пептолитическими. Пептолитическими являются некоторые клостридии, в частности С. histolyticum и C. botulinum. Пептолитические бактерии гидролизуют белки и сбраживают аминокислоты. Многие аминокислоты сбраживаются совместно с другими, при этом одна выполняет функцию донора, а другая - функцию акцептора водорода.
    Аминокислота-донор дезаминируется в кетокислоту, которая в результате окислительного декарбоксилирования превращается в жирную кислоту.
    1   2   3   4   5   6   7   8   9   ...   26


    написать администратору сайта