Главная страница

Ответы на Вопросы на экзамен по физиологии. Помошь физа. 3. Современные представления о процессе возбуждения. Потенциал действия, его фазы. Ионные механизмы потенциала действия


Скачать 252.37 Kb.
Название3. Современные представления о процессе возбуждения. Потенциал действия, его фазы. Ионные механизмы потенциала действия
АнкорОтветы на Вопросы на экзамен по физиологии
Дата11.04.2021
Размер252.37 Kb.
Формат файлаdocx
Имя файлаПомошь физа.docx
ТипЗакон
#193675
страница10 из 18
1   ...   6   7   8   9   10   11   12   13   ...   18

Астенические эмоции (страх, тоска, ужас) возникают вследствие того, что предельное напряжение не принесло положительного результата: цель оказалась недостигнутой. На смену предельному напряжению приходит полный упадок физических и психических возможностей. Астенические эмоции могут принести к невротическим расстройствам, в которых положительный адаптивный эффект оказывается полностью снятым. Отрицат.последствия м. иметь и сильные положительные эмоции. Известны случаи, когда чрезмерная радость оканчивалась трагически. Разумеется, трагический исход от действия сильных отрицательных эмоций более вероятен, чем от положительных. Степень выраженности и внешнего проявления эмоций у человека находится под волевым контролем коры больших полушарий. Однако их вегетативный компонент регулируется на уровне лимбического мозга и гипоталамуса. С функцией гипоталамуса связано, в первую очередь, удовлетворение актуальных биологических потребностей, с которыми связано эмоциональное возбуждение. Эмоции, согласно представлениям П-К. Анохина, служат мерой удовлетворения потребности или полезности результата. При удовлетворении потребности возникает положительная эмоция, при неудовлетворенной потребности - отрицательная. Положительные эмоции, доставляющие радость, удовольствие, возникают не только от удовлетворения актуальной потребности, но и от получения необходимой (полезной) информации. Согласно информационной, теории эмоции являются регуляторами поведения. Поведенческая реакция определяется наличием потребностей и возможностью их удовлетворения. Сигналы, поступающие из внешней среды, оцениваются с точки зрения вероятности их использования в качестве средств, удовлетворения актуальных потребностей (сигналы с малой и большой вероятностью удовлетворения потребностей). Передние отделы новой коры ориентируют поведение на сигналы, обладающие высокой вероятностью подкрепления, иначе говоря, удовлетворения потребностей. На сигналы с малой вероятностью подкрепления отвечает гиппокамп. В случае ослабления коркового контроля возможна субъективная оценка маловероятных событий как событий с большой вероятностью подкрепления. События с принципиально различной вероятностью подкрепления представляются равновероятными.

Вегетативные реакции являются важными компонентами целостных актов, имеющих приспособительный характер, поэтому они традиционно исследуются физиологами и психологами. Ниже перечислены некоторые из этих реакций. Одним из самых популярных показателей деятельности автономной нервной системы при аффективных состояниях у человека является кожно—гальваническая реакция (феномен Тарханова). Она зависит от состояния потовых желез, проявляется в снижении электрического сопротивления между двумя участками поверхности кожи. Эту реакцию используют для определения ложных показаний, раскрытия симуляции, анализа состояния эмоциональной сферы испытуемого. У человека и животных аффективные реакции отражаются также в изменениях артериального давления, электрокардиограммы, различных показателей дыхания, температуры кожи, зрачковой реакции, секреции слюны, пиломоторных реакций, дермографизма (изменение окраски кожи при ее механическом штриховом раздражении), моторики желудка и кишки, мышечного напряжения, мигания, движения глаз. Об эмоциональной сфере судят по содержанию катехоламинов, пептидов и глюкозы в крови, слюне и моче. Показателем эмоционального напряжения является тремор мышц. На фоне аффекта резко меняются различные характеристики ЭЭГ. Хотя по ЭЭГ трудно дифференцировать знак эмоции, установлено, что отрицательные эмоциональные возбуждения характеризуются длительным последействием и могут суммироваться; положительные — кратковременным последействием, но устраняющим картину суммарной электрической активности, присущей отрицательным эмоциональным состояниям. Тесно связан с эмоциональным состоянием, преимущественно с отрицательным, гиппокампальный Θ—ритм, однако его изменения сочетаны не только с аффективной сферой, но и с другими сторонами деятельности мозга. Попытки связать определенную эмоцию с возбуждением одного из отделов автономной нервной системы не увенчались успехом. Некоторые исследователи привели доказательства связи эмоций умеренной интенсивности, если они приятны, с парасимпатическим отделом автономной нервной системы, если неприятны — с симпатическим.

37. Ноцицепция

Ноцицепция - процесс распознания организмом повреждения тканей, вызванного механическим, термическим или химическим раздражителем. Информация о повреждении передается проводниками от места повреждения по особым нервным волокнам в центральную нервную систему. Там эта информация обрабатывается и распознается, формируя возбуждение определенных структур мозга и вызывая ответную реакцию нервной и других систем организма. Быстро возникающая первичная боль (например, при уколе) распространяется по волокнам А-дельта, жгучая, сильная боль, наступающая после некоторого латентного (скрытого) периода — по волокнам типа С. В классической форме афферентная система ноцицепции представлена цепью из трех последовательно расположенных нейронов, передающих от рецепторов в кору головного мозга информацию о том, что начал действовать повреждающий фактор.

Первый нейрон, переферический, расп-ся в межпозвоночном узле и одном узле тройничного нерва. Оголенные окончания волокон А-дельта и С выполняют роль болевых рецепторов (ноцицепторов), которые могут возбуждаться механическими раздражителями значительной интенсивности либо несколькими видами раздражителей — механическими, термическими и химическими, при возбуждении рецепторов волокон С. Св-ва ноцицепторов: высокий порог возбудимости, сенситизация и отсутствие адаптации. Сенситизация заключается в понижении порога возбудимости ноцицепторов непосредственно после возбуждения и нарастания ответа на повторяющееся раздражение, а также готовности к спонтанной активности.

Существуют специальные нервные волокна, которые называют волокнами болевых рецепторов. Соматическая и висцеральная боль связана с появлением импульсов в медленнопроводящих миелиновых и безмиелиновых волокнах. С волокнами проводятся не только болевые, но также и механические раздражения волос, кожных и слизистых покровов температурными воздействиями и давлением. Наибольшее количество ноцицепторов находится в коже, в роговице, в подмышечных и паховой областях.

Механизмы. При повреждении тканей в них появляются вещества - тканевые

алгогены, раздражающие болевые нервные окончания, типа хеморецепторов: гистамин, при попадании под кожу вызывает ощущение боли; также болевые ощущения усиливаются и провоцируются ацетилхолином, катехоламинами, серотонином. Помимо периферических механизмов болевого ощущения важную роль играют и центральные механизмы. По спиноталамическому пути импульсы боли достигают задних ядер таламуса. Аксоны первых нейронов синаптически заканчиваются в задних рогах спинного мозга. Клетки второго нейрона локализуются прежде всего в I и II слое желеобразной субстанции. С передачей ноцицепторных импульсов связаны также расположенные глубже нейроны III, IV и V слоев. Передача импульсов между первым и вторым нейроном в этом месте контролируется малыми вставочными нейронами.

Антиноцицепция. противоболевые антиноцицептивные структуры, активизация которых способна изменить болевую реакцию вплоть до ее полного исчезновения. Структуры этой системы оказывают нисходящий контроль афферентной импульсации на сегментном уровне, вызывая торможение нейронов спинного мозга.

Боль — это восприятие импульсов, доходящих до уровня центральной нервной системы, эмоциональная реакция на идущее от нервных окончаний раздражение. В настоящее время предложено несколько классификаций боли. В зависимости от локализации повреждения, боль может быть разделена: на соматическую поверхностную (в случае повреждения кожных покровов), соматическую глубокую (при повреждении костно-мышечной системы), висцеральную (при повреждении внутренних органов). Каузалгия — «жгучая боль», жестокая, мучительная боль, наблюдающаяся при повреждении крупного соматического нерва.

Фантомная боль в классическом варианте возникает у людей после ампутации конечностей. В течение длительного времени больной может ощущать отсутствующую (ампутированную) конечность и изнурительную, подчас невыносимую боль в ней. Пересеченные во время ампутации крупные нервные стволы с обилием толстых нервных волокон приводят к прерыванию импульсации с периферии. В результате нейроны спинного мозга становятся менее управляемыми и могут давать вспышки возбуждения на самые неожиданные стимулы. Раздражение нервных окончаний или нервных стволов культи, дойдя до коры головного мозга, воспринимаются как соответствующие психические образы. И человек проецирует свои ощущения на отсутствующую конечность и ее элементы.

Существуют различные шкалы и вопросники для исследования боли, использующиеся в специализированных центрах лечения боли: вербальная (бальная) оценка; визуально — цифровой способ построения болевой шкалы. Общее обезболивание (наркоз); Местное обезболивание; Аппликационное обезболивание

Этапами адекватного обезболивания являются: 1. Предоперационная оценка интенсивности и длительности болевого синдрома. 2. Построение плана лечения боли (анальгетик(и), пути введения, частота и т.д.) 3. Лечение боли. 4. Послеоперационная оценка эффективности обезболивания (для корректировки плана лечения боли при недостаточном обезболивании).

38. физиологические свойства мышц. Классификация и особенность скелетных мышечных волокон. Нейромоторные единицы.

Физиологические свойства мышц – 1.Возбудимость мышечной ткани меньше возбудимости нервной ткани - способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала. 2.Проводимость мышечной ткани меньше проводимости нервной ткани - способность проводить потенциал действия вдоль и в глубь мышечного волокна по Т-системе. 3.Рефрактерность мышечной ткани больше рефрактерности нервной ткани. Рефрактреность - кратковременное снижение возбудимости непосредственно вслед за потенциалом действия. Лабильность - функциональная подвижность ткани, характеризующаяся наибольшей частотой, с которой ткань может возбуждаться в ритме раздражений. Л. мышечной ткани ниже лабильности нервной ткани.

Скелетные мышцы составляют 40% от массы тела и выполняют ряд важных функций: 1 - передвижение тела в пространстве, 2 - перемещение частей тела относительно друг друга, 3 - поддержание позы, 4 - передвижение крови и лимфы, 5 - выработка тепла, 6 - участие в акте вдоха и выдоха, 7 - двигательная активность как важнейший антиэнтропийный и антистрессовый фактор (тезисы "движение - это жизнь" или "кто много двигается, тот много живет" - имеют реальную материальную основу), 8 - депонирование воды и солен, 9 - защита внутренних органов (например, органов брюшной полости).

Функционалная единица мышцы - двигательная единица, состоящая из мотонейрона спинного мозга, его аксона (двигательного нерва) с многочисленными окончаниями и иннервируемых им мышечных волокон. Возбуждение мотонейрона вызывает одновременное сокращение всех входящих в эту единицу мышечных волокон.

Мышечное волокно - вытянутая клетка(диаметр около 10-100 мкм, а длина 10-12 мм). В состав волокна входят оболочка - сарколемма, жидкое содержимое - саркоплазма, ядро, митохондрии, рибосомы, сократительные элементы - миофибриллы, а также замкнутая система продольных трубочек и цистерн, расположенных вдоль миофибрилл и содержащих ионы Са2+, - саркоплазматический ретикулум. Поверхностная мембрана клетки через равные промежутки образует поперечные трубочки, входящие внутрь мышечного волокна, по которым внутрь клетки проникает потенциал действия при ее возбуждении.

Миофибриллы - тонкие волокна, содержащие 2 вида сократительных белков: тонкие нити актина и вдвое более толстые нити миозина. Они расположены так, что вокруг миозиновых нитей находится 6 актиновых нитей, в вокруг каждой актиновой - 3 миозиновых. Миофибриллы разделены 2-мембранами на отдельные участки - саркомеры, в средней части которых расположены преимущественно миозиновые нити, а актиновые нити прикреплены к 2-мембранам по бокам саркомера. Актин состоит из двух форм белка: 1) глобулярной формы - в виде сферических молекул и 2) палочковидных молекул тропомиозина, скрученных в виде двунитчатых спиралей в длинную цепь. На протяжении этой двойной актиновой нити каждый виток содержит по 14 молекул глобулярного актина, а также центры связывания ионов Са2+. В этих центрах содержится особый белок (тропонин), участвующий в образовании связи актина с миозином. Миозин составлен из уложенных параллельно белковых нитей. На обоих концах его имеются отходящие в стороны шейки с утолщениями – головками, благодаря которым образуются поперечные мостики между миозином и актином.

Мышцы подразделяются по их положению в теле человека, по форме, функции и т.д.

Выделяют поверхностные и глубокие мышцы, наружные, внутренние, срединные (медиальные) и боковые (латеральные).

По форме мышцы весьма разнообразны. Есть веретенообразные мышцы (на конечностях), есть широкие мышцы, участвующие в образовании стенок тела.

Если сухожилие мышцы лежит на боковой поверхности мышцы, под углом к ней, то мышцу называют одноперистой, а если мышечные пучки лежат с обоих сторон сухожилия, то мышцу называют двуперистой. Если мышечные пучки сложно переплетаются и подходят к сухожилию с нескольких сторон, то мышцу называют многоперистой.

Мышца может иметь несколько головок – мышечных частей, которыми она начинается от кости, несколько сухожильных “хвостов” - частей, которыми мышца прикрепляется к другой кости (дальняя часть мышцы). Мышцы имеющие две – три – четыре головки соответственно называются двуглавыми, трехглавыми, четырехглавыми.

Головки мышцы могут начинаться с различных участков одной кости или с разных костей, затем образуют общее брюшко. От одного мышечного брюшка может выходить несколько сухожильных “хвостов”, прикрепляющихся к различным костям (например на кисти).

У некоторых мышц мышечные волокна имеют циркулярные направления, такие мышцы окружают естественные отверстия тела, выполняя функцию сжимателей – жомов (сфинктеров).

Некоторые мышцы получили свое название по форме – ромбовидная, трапециевидная мышцы; другие мышцы называют по месту их прикрепления –плечелучевая и т.д.

Если мышца прикрепляется к костям одного сустава и действует только на один этот сустав, то эту мышцу называют односуставной, а если мышцы перекидываются на два и более суставов, то такие мышцы называются двусуставными, многосуставными.

Некоторые мышцы начинаются и прикрепляются к костям, не формирующим суставы (например мимические мышцы лица, мышцы дна рта).

В толще некоторых сухожилий развиваются сесамовидные кости (надколенник, гороховидная кость на кисти), эти кости выполняют роль для мышечных сухожилий.

39. одиночное сокращение скелетной мышцы, тетанус

Скелетная мышца обладает свойствами:

1)возбудимостью — способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала. В естественных условиях раздражитель АцХ, который выделяется в пресинаптических окончаниях аксонов мотонейронов. В лаб. усл. часто исп. эл. стимуляцию мышцы.

2)проводимостью — способностью проводить потенциал действия вдоль и в глубь мышечного волокна по Т-системе;

3)сократимостью — способностью укорачиваться или развивать напряжение при возбуждении; 4)эластичностью — способностью развивать напряжение при растягивании.

Ее функции: динамическая; статическая; рецепторная (например, проприорецепторы в сухожилиях), депонирующая - вода, минеральные вещества, кислород, гликоген, фосфаты; терморегуляция; эмоциональные реакции.

Одиночное сокращение. Когда мышца получает единичный стимул (например, единичный электрический импульс), она отвечает быстрым одиночным сокращением, продолжительность которого для мышцы лягушки составляет примерно 0,1 сек, а для мышцы человека — примерно 0,05 сек. Лабораторная запись одиночно-го сокращения показывает, что оно состоит из трех отдельных фаз: 1) латентного периода продолжительностью около 0,01 сек — промежутка времени между воздействием стимула и началом видимого укорочения мышцы; 2) периода сокращения продолжительностью около 0,04 сек, в течение которого мышца укорачивается и производит работу; 3) периода расслабления, самого продолжительного из трех (0,05 сек), во время которого мышца возвращается к своей первоначальной длине. Скелетным мышечным волокнам, так же как и нервным волокнам, свойствен рефрактерный период — очень короткий, следующий непосредственно за раздражением период, во время которого они не способны отвечать на второе раздражение. Рефрактерный период скелетной мышцы настолько краток, что мышца уже может реагировать на второе раздражение, когда она еще сокращается под действием первого. Наложение второго сокращения на первое приводит к более сильному укорочению мышечного волокна — суммация. Первичный эффект раздражения мышцы состоит в возникновении и распространении электрической реакции — мышечного потенциала действия , за которым следует изменение в структуре сократимого белка, актомиозина, выявляемое по изменению двойного лучепреломления мышцы. После сокращения мышца потребляет больше кислорода и выделяет больше углекислоты и тепла, чем во время покоя; это так называемый период восстановления, в течение которого мышца возвращается в исходное состояние. Период восстановления продолжается несколько секунд, и если мышцу повторно раздражать таким образом, чтобы последующие сокращения происходили раньше, чем мышца вернется в нормальное состояние после предшествующих, то мышца утомляется, сокращения становятся слабее и, наконец, прекращаются. Если утомленной мышце дать некоторое время отдохнуть, она вновь приобретает способность сокращаться.

Тетанус. Нормальное сокращение мышцы протекает не в форме одиночных сокращений, а в форме длительного сокращенного состояния, вызываемого «залпом» отдельных нервных импульсов, приходящих к мышце в быстрой последовательности. Такого рода длительное сокращение называется тетанусом; во время тетануса нервные импульсы поступают с такой частотой (несколько сот в секунду), что расслабление между последовательными сокращениями произойти не успевает. В большинстве случаев при тетаническом сокращении отдельные мышечные волокна получают импульс не одновременно, а, так сказать, посменно; хотя отдельные волокна сокращаются и расслабляются, мышца как целое остается частично сокращенной. Каждый знает, что любая мышца тела может сократиться в различной степени. Эта градация сокращений регулируется нервной системой: при одновременном возбуждении лишь небольшой доли мышечных волокон получается слабое сокращение, а при одновременном возбуждении большого их числа — более сильное сокращение.
1   ...   6   7   8   9   10   11   12   13   ...   18


написать администратору сайта