Главная страница

Ответы на Вопросы на экзамен по физиологии. Помошь физа. 3. Современные представления о процессе возбуждения. Потенциал действия, его фазы. Ионные механизмы потенциала действия


Скачать 252.37 Kb.
Название3. Современные представления о процессе возбуждения. Потенциал действия, его фазы. Ионные механизмы потенциала действия
АнкорОтветы на Вопросы на экзамен по физиологии
Дата11.04.2021
Размер252.37 Kb.
Формат файлаdocx
Имя файлаПомошь физа.docx
ТипЗакон
#193675
страница2 из 18
1   2   3   4   5   6   7   8   9   ...   18

Насосы. Деятельность насосов, которые представляют собой транспортные АТФазы (Na+—К+—АТФаза, Са2+—Mg2+— АТФа- ' К +— Н+—АТФаза, Н+—АТФаза, анионная АТФаза и др.), лежащих в основе функционирования практически всех известных! клеток.

Транспортеры. Мобильный переносчик, представляющий co¬бой, как правило, белковую молекулу, движется от одной поверхности мембраны к другой, совершая вертикальные или вращательные движения, чтобы связывать транспортируемые субстраты на одной поверхности мембраны и освобождать — на другой. Типичным примером мобильного переносчика могут служить ионофоры.

Переносчики переносят один или ограниченное число типов молекул через мембрану либо по электрохимическому градиенту, либо благодаря сопряжению с механизмом транспорта другого вещества, движение которого по градиенту концентрации служит источником энергии для сопряженного с ним процесса.

Канал (как устройство) характеризуется наличием постоянной или индуцированной поры, через которую проходит транспортируемое вещество. Если несколько молекул интегральных белков в мембране удачно пространственно ориентированы, то внутри их группы может возникнуть каналец (пора), на внутрен¬ней поверхности которого преобладают положительные или отрицательные заряды или он может быть нейтральным, но содержать из¬быток гидрофильных групп.

В каждом канале следует различать наружное и внутреннее устья и суженную часть поры — "селективный фильтр". Устья канала способны принимать ион вместе с его гидратной оболоч¬кой. При поступлении его в канал происходит замещение моле¬кулы воды гидратной оболочки иона на полярные группы поло¬сти канала. Работа же по частичной или полной дегидратации иона осуществляется в области селективного фильтра.

Однорядный транспорт ионов через канал обладает харак¬терными особенностями. Ион относительно долго задерживает¬ся в каждой потенциальной яме. Это значит, что второй ион не может попасть в занятую потенциальную яму из-за электроста¬тического взаимодействия (отталкивания) с уже находящимся там ионом. Перескоки между ямами совершаются под действием тепловых флуктуации (колебаний). Выход из канала иона облег¬чается при появлении на входе канала другого иона вследствие их электростатического отталкивания. Проводимость канала за¬висит от того, насколько заполнены участки "входа" и "выхода"

канала, связывающие ионы. Осо¬бое значение имеют каналы, проницаемые для ионов Na+, К+, Сl Са, т. е., каналы, изби¬рательно пропускающие эти ионы. Они обладают воротны¬ми механизмами и в зависимости от их функционального состояния могут быть открытыми или закрытыми. В связи с этим их классифицируют по следующим ос¬новным признакам: 1) по иону, который избирательно проникает через канал, 2) по механизму, управляющему этим каналом.

Потенциал приемные каналы. Работа потенциал управля¬емого канала зависит от мембранного потенциала. Наиболее яр¬ким представителем такого канала является потенциалуправляемый Nа+-канал. Вход в Nа+-канал является селективным фильт¬ром, который пропускает практически только ионы Na+. В по¬кое Na-каналы закрыты и открываются лишь во время деполя¬ризации мембраны. Внутри Na-канала имеется воротный меха¬низм, контролируемый потенциалом. Этот компонент поры под¬вергается влиянию мембранного потенциала через заряженный "сенсор" в липидной фазе мембраны. При деполяризации эти за¬ряды смещаются, вызывая изменение молекулярной конформации. которое открывает проход через канал. Смещение заряда регистрируется в виде воротного тока, который непо¬средственно предшествует входу Na+ в клетку в начале возбуж¬дения.

Рецепторуправляемые каналы. В этом случае ворота каналов управляются за счет ре¬цептора, расположенного на поверхности мембраны; при взаи¬модействии медиатора (лиганда) с этим рецептором может про¬исходить открытие ионных каналов.

Наконец, открытие ворот канала может происходить в ре¬зультате действия на мембрану других ионов — ионоуправляемый канал (название по иону).

Поры. Кроме того, в мембране находятся неспецифические каналы для ионной утечки, каждый из которых проницаем для ио¬нов К+, Na+ и Сl (больше всего для К+). Эти каналы (или поры) не имеют воротных механизмов, всегда открыты и почти не меняют своего состояния при электрических воздействиях на мембрану.

Подводя итоги, следует отметить, что внутриклеточная и вне¬клеточная среды отличаются по ионному составу. Эти различия обеспечиваются процессами постоянного транспорта веществ че¬рез мембрану. Благодаря существованию одновременно несколь¬ких механизмов транспорта его скорость может варьироваться в результате изменения их состояния и соотношения между ними под влиянием внешних факторов. Наличие динамического равно-весия между постоянными ионными потоками определяет заряд мембраны ЖИВОЙ клетки. При гибели же клетки, когда активный транспорт выключается, происходит постепенное выравнивание состава внутриклеточной и внеклеточной сред.

МЕМБРАННЫЕ ПОТЕНЦИАЛЫ

Мембранный потенциал характеризует разность потенциалов поверхностей мембраны в результате избирательного переноса катионов и анионов. Различают потенциал покоя, местный потенциал действия.

ПОТЕНЦИАЛ ПОКОЯ. клетка находится в состоянии физиологического покоя, поверхность заряжена положительно, а внутри отрицательно.. Эта разность потенциалов получила название мембранного потенциала покоя.

Природа его возникновения и поддержания:

1. Неравномерное распределение концентраций ионов во внутри- и внеклеточном пространствах.

2. Различная проницаемость мембраны для ионов. Ионы К+ и С1+ проходят через нее легко. Na+— с трудом, а органические ио¬ны вообще не проходят.

Всякая несущая электрический заряд частица (ион или полярная молекула), находящаяся в растворе, окружается сольватной оболочкой. Если растворитель - вода, то оболочка будет называться гидратной, а процесс -- гидратацией. Сте¬пень гидратации различных ионов и молекул неодинакова и зависит от размеров частиц и их зарядов. Чем выше удельная плотность заряда, тем сильнее гидратация. Поэтому ион калия, несмотря на большой радиус, имеющий больший (2.66 А) крис¬таллический диаметр по сравнению с ионом натрия (1.8 А), в гидратированной форме меньше гидратированного иона натрия. Таким образом, ионы К+ могут достаточно легко диффун¬дировать через мембрану. Поскольку с внутренней стороны мембраны ионов К+ гораздо больше, чем снаружи, то имеет место чистый выход К+ из клетки, создаваемый более высокой внутриклеточной концентрацией или осмотическим давлени¬ем К+. Этот выходящий поток ионов К+ должен был бы вскоре выровнять осмотическое давление (пли концентрацию) этого иона, если бы ему не противодействовала эквивалентная про¬тивоположно направленная сила. Эта сила, действующая в противоположном направлении, обусловлена электрическим зарядом ионов К+. Вышедшие из клетки ионы К+ создают на наружной поверхности мембраны избыток положительно за-ряженных частиц. На внутренней же поверхности возникает избыток крупных молекул органических анионов, оставшихся без нейтрализующих их калий-положительных ионов. Благо¬даря электростатическим силам, вышедшие катионы К+ не мо¬гут далеко удалиться от наружной поверхности мембраны (по¬ложительно заряженные частицы, находящиеся вне клетки, прижимают их к мембране, а скопившиеся на внутренней по¬верхности отрицательно заряженные частицы стремятся "вта¬щить" их обратно внутрь клетки). Однако высокий концентра¬ционный градиент для калия препятствует этому. Мембран¬ный потенциал продолжает нарастать до тех пор. пока сила, препятствующая выходу К+, не станет равной осмотическому давлению ионов К+. При таком уровне потенциала вход и выход К+ находятся в равновесии, поэтому он называется калиевым равновесным потенциалом, сокращенно Ек.

т. е. потенциал покоя близок к калиевому равновесному потенциалу, но не равен ему,

поскольку в его формировании помимо диффузии К+ принимают участие и другие механизмы.

Потенциал покоя зависит от следующих факторов.

1. Внеклеточной концентрации К+.

2. Катионов Na+, по градиенту концентрации поступающих в клетку. Но положительный заряд потока натрия значительно больше, чем противоположный поток ионов калия.

3. Ионов Сl В нервных клетках проницаемость для Сl обычно гораздо ниже, чем для К+. однако в мышечных волок¬нах наоборот. Распределение Сl по обе стороны мембраны противоположно распределению К+.

4. Работы натриевого насоса. Активный транспорт ионов Na и К против градиента концентраций. Мембранный механизм, поддерживающий определённое соотношение ионов Na+ и К+ в клетке. 3 Na наружу и 2 К внутрь. 3 положительных заряда выносятся и 2 заносятся, чтобы внутренняя поверхность мембраны оставалась отрицательно заряжена – электрогенный эффект насоса. Чем больше К внутри, тем быстрее он утекает по каналам утечки. Создается дополнительный положительный заряд снаружи – неэлектрогенный эффект насоса.

Следует обратить внимание на факт возникновения и под¬держания потенциала покоя как активного саморегулирующе¬гося процесса.

Функция мембранного потенциала покоя. В самой мембране потенциал покоя проявляется как электрическое поле значи¬тельной напряженности (10 В/см). Это воздействует на макромолекулы мембраны и придает их заряженным группам определен¬ную пространственную ориентацию.

Особенно важно, что электрическое поле мембранного по¬тенциала покоя обеспечивает закрытое состояние так называе¬мых активационных ворот натриевых каналов и открытое состояние их инактивационных ворот, а следовательно, состояние покоя и готовности к возбуждению.

Наряду с мембранной теорией существуют и другие взгляды, изъясняющие формирование потенциала покоя.

Теория редокспотенциалов. Она объясняет возникновение электродвижущих сил (электрических потенциалов) в клетке, рассматриваемой в качестве редокссистемы (окислительно-вос¬становительная система), разным уровнем окислительно-восста-новительных процессов. Согласно этой теории, источником воз¬никновения потенциалов на поверхности биологических мемб¬ран (потенциала покоя) являются высвобождающиеся при окислительно-восстановительных процессах электроны. Вследствие повышения интенсивности обмена веществ, под влиянием раздражений, окислительные процессы усиливаются и потенциал покоя может перейти в местный потенциал действия. Главной отличительной особенностью данной теории является то, что она ставит возникновение электрических потенциалов в зависи¬мость от состояния метаболических процессов в клетке, а не только от обмена веществ мембраны, обеспечивающей актив¬ный транспорт.

Теория протонно-химических процессов. В соответствии с нею возникновение мембранного потенциала есть результат пе¬реноса положительно заряженных частиц — протонов.

3. Потенциал действия.

Возбуждение – клеток и тканей активно реагировать на раздражение. Возбудимость – это свойство ткани отвечать на возбуждение. 3 типа возбудимых тканей: нервная, железистая и мышечная.

Возбуждение представляет собой как бы взрывной процесс, возникающий в результате изменения проницаемости мембраны под влиянием раздражителя.

Это изменение вначале относительно невелико и сопровождается лишь небольшой деполяризацией, небольшим уменьшением мембранного потенциала в том месте, где было приложено раздражение, и не распространяется вдоль возбудимой ткани (это так называемое местное возбуждение). Достигнув критического – порогового - уровня, изменение разности потенциалов лавинообразно нарастает и быстро - в нерве за несколько десятитысячных долей секунды - достигает своего максимума.

П.Д. возникает, когда мышечные клетки активны и возникает быстрый сдвиг мембранного потенциала в положительном направлении. При этом наружная поверхность участка становится заряжена отрицательно, внутренняя – положительно.

Возникает при первичной деполяризации мембраны до -50мВ – критический уровень деполяризации. Приводит к открытию потенциал зависимых Na+ и K+ каналов. Через него ионы устремляются по градиенту: Na вовнутрь, а K наружу (пассивный транспорт). Поступление натрия внутрь обеспечивает восходящую фазу ПД (деполяризации) и инверсию потенциала на мембране. Открытие калиевых каналов запаздывает, К начинает выходить из клеток и рост ПД замедляется – нисходящая фаза (реполяризация) и восстановление исходного потенциала. Причиной остановки деполяризации и развития реполяризации служат:

- увеличение деполяризации: МП достиг натриевого равновесия, электрохимический градиент для натрия уменьшается, т.е. уменьшается сила засасывания натрия.

- при деполяризации мембраны происходит закрытие натриевых каналов => уменьшается проницаемость натрия.

- открытие калиевых каналов, достигается калиевое равновесие.

В какой-то момент величина натриевого тока уравновеш с величиной калиевого тока => прекращается изменение МП, что соответствует пику ПД, но величина входящего натриевого тока уменьш, а К увеличивается, возникает смещение равновесия в сторону калиевого тока и нач процесс реполяризации.

В кардиомиоцитах возможно замедление МП и формируется плато.

Следовая гиперполяризация.

Обуславливается:

- ионной природой

- метаболической природой

Ионная природа СГ связана с тем, что после достижения заряда величины МПП, К-каналы еще какое то время остаются открытыми, в результате МП смещается и становится равным величине К-равновесия. При метаболической природе транспорт натрия обеспечивается Na- насосом, требующим АТФ.

В основе следовой деполяризации лежит ионный механизм: накапл К у наружн пов-ти мембраны. В результате инактивации Na-каналов формируется явление рефрактерности (способность клеток не отвечать на повт раздражение), но идет реполяризация. Фазы ПД: деполяризация, овершут («перебор», ПД больше 0), реполяризация, следовые потенциалы (гиперполяризационный и деполяризационный).

4. Законы раздражения возбудимых тканей. Полярный закон раздражения (Пфлюгер). Изменения мембранного потенциала под анодом и катодом постоянного тока.

1) закон полярного раздражения

2) электротон

3) закон порога (силы раздражения)

4) закон крутизны

5) закон длительности действия

1. Закон полярности (Пфлюгер) – в момент замыкания раздражения тока или в момент увеличения его силы, заряд возникает в области катода (отрицат полюс), при ослаблении тока (в момент размыкания) - в области анода. При одной и то же силе раздражающее действие замыкания выражается сильнее, чем действие размыкании. В случае электродов снаружи:

1) при включении тока раздражение возникает в области катода.

2) при выключении – в области а-да.

Закон электротона. Изменение полярности мембран изменяет величины МП, создаваемое пропусканием через данный участок мембраны эл тока от внешнего источника приводит к изменению возбудимости. Существует катэлектротон при выходящем токе, и анэлектротон при входящем токе.

При действии катода – выход тока – происходит разрядка мембранной емкости, при этом возбудимость и проводимость оказываются повышенными. Под анодом идет процесс дозарядки мемб-уменьшается возбудимость и проводимость.

5. Законы раздражения возбудимых тканей. Соотношение между силой и временем раздражения. Хронаксиметрия.

1) закон полярного раздражения

2) электротон

3) закон порога (силы раздражения)

4) закон крутизны

5) закон длительности действия

Закон крутизны. При раздражении деполяризаций ток должен нарастать круто. Если промежуток подачи тока велик, то происходит смещения уровня КУД в + сторону и изменяющийся в этом же направлении МП его не догоняет. Позитивное смещение КУД при длительной деполяризации - аккомодация – приспособление ткани к току. Если ток нарастает очень медленно, то он никогда не догонит КУД и никогда не возникнет ПД.

Закон длительности действия. Каждому напряжению тока соответствует мин. длительность его воздействия на ткань, чтобы ток смог вызвать возбуждение. Если при данном напряжении удлинять время прохождения тока через ткань сверх мин длительности, то никакого изменения в наступлении эффекта возбуждения не происходит.

Даже очень большое напряжение, если действ очень короткий промежуток времени не может вызвать возбуждение. Очень слабые раздражители как бы долго они не действовали, не вызывают возбуждения. Ответная реакция зависит от времени действия тока. Существует минимальное напряжение, которого достаточно при неограниченно долгом действии тока, чтобы вызвать возб. - реобаза. Мин время, которое необходимо, чтобы вызвать возб током в одну реобазу – полезное время. Хронаксия – время тока в 2 реобазы, прив к возб. Величина хронаксии находится во взаимосвязи со скоростью реакции: чем быстрее реагирует ткань, тем короче ее хронаксия. Хронаксия – миним время и миним напряжение, которое дает положительный эффект.

6. Законы раздражения возбудимых тканей. Адекватные и неадекватные раздражители. Порог раздражения.

1) закон полярного раздражения

2) электротон

3) закон порога (силы раздражения)

4) закон крутизны

5) закон длительности действия

Закон порога. Для возбудимых элементов существует минимальная сила раздражителя, необходимая для миним по величине возбуждения, получившая название порог возбуждения. Величина порога является мерой возбудимости ткани. Т.е. порог – минимальная сила раздражителя, при которой возникает минимальная величина возбуждения.

По своему физиологическому значению все раздражители делят на адекватные и неадекватные.

Адекватными называются те раздражители, которые действуют на данную биологическую структуру в естественных условиях, к восприятию которых она специально приспособлена и чувствительность к которым у нее чрезвычайно велика. Для палочек и колбочек сетчатки глаза адекватным раздражителем являются лучи видимой части солнечного спектра, для тактильных рецепторов кожи - давление, для вкусовых сосочков языка - разнообразные химические вещества.

Неадекватными называются те раздражители, для восприятия которых данная клетка или орган специально не приспособлены. Так, мышца сокращается при воздействии кислоты или щелочи, электрического тока, внезапного растяжения, механического удара, быстрого согревания и т. д.
1   2   3   4   5   6   7   8   9   ...   18


написать администратору сайта