госы (1). 51. Газоны. Составы и особенности использования в различных ситуациях
Скачать 1.11 Mb.
|
Фотосинтез Фотосинтез, имеющий главное значение в схеме питания и роста растений, в значительной степени зависит от интенсивности и спектра освещения и его продолжительности. Слишком малая освещенность ведет к удлинению побегов, уменьшению площади листа, сокращению образования хлорофилла; преобладание сине-фиолетового излучения замедляет рост, а чрезмерное красное излучение его ускоряет. При оптимальном режиме фотосинтеза гарантируется правильное развитие растений. Для теневыносливых растений требуются уровни освещенности от 1000 до 5000 лк, для светолюбивых – от 10000 лк. Естественная освещенность в средней полосе в солнечный зимний день под открытым небом составляет 5000 – 6000 лк, в помещении – до 2000 лк, а при облачности – около 500 лк (в утренние и вечерние часы значительно темнее). Требуемые высокие уровни освещенности для экзотических растений не могут обеспечиваться обычными декоративными световыми приборами и требуют специального оборудования. Более того, такие уровни несовместимы с длительным пребыванием людей, поэтому для освещения сада должно быть выделено определенное время. Тропическое происхождение большинства комнатных и оранжерейных растений обусловливает их потребность в 12-16-часовом световом дне. Самые эффективные и популярные источники света для искусственного освещения растений – натриевые и металлогалогенные разрядные лампы. Натриевые лампы дают мощный свет в оранжевой и красной полосах спектра, который способствует росту растений и цветению; при использовании натриевых ламп цветение увеличивается на 20% и более. Некоторый дефицит синего излучения компенсируется естественным освещением, поступающим через окна или остекление оранжереи. Если растения располагаются в закрытых или сильно затененных помещениях практически без доступа естественного света, натриевые лампы должны использоваться в сочетании с металлогалогенными лампами (МГЛ), менее эффективными, но имеющими более высокое содержание синего излучения. Наилучший эффект достигается при совместном использовании этих двух типов ламп – одновременном или последовательном, поскольку обеспечивается баланс спектра во время полного цикла роста растений. Для обеспечения растений освещенностью около 10000 лк при размещении их на расстоянии 1 – 1,5 м от источника света рекомендуется установить столько ламп, чтобы удельная мощность составляла 70 – 90 Вт/кв.м. На практике экономичны и удобны лампы с зеркалированной колбой, которая позволяет рационально направить все излучение на растения, сделать осветительное устройство компактным, легким и удобным в обслуживании. Зимний сад – это красивый и сложный организм, в котором все взаимосвязано. Проектирование зимнего сада включает в себя множество параметров. Чтобы зимний сад нормально функционировал, следует обязательно принимать во внимание расположение зимнего сада, его форму, направление, уклон крыши, систему вентиляции и возможности затенения, которые являются решающими факторами для обеспечения возможности постоянного использования этого объекта. В связи с этим владельцу следует своевременно и основательно ознакомиться с тем, какие возможности использования дает зимний сад и какие требования следует предъявлять к нему. Из-за наличия обширных остекленных поверхностей микроклимат зимнего сада отличается от того, который характерен для обычного внутреннего помещения. Он зависит в первую очередь от температуры и влажности воздуха внутри остекленного объема. Кроме того, важную роль играет состояние воздуха в окружающем наружном пространстве. Это объясняется как воздействием внешних климатических условий, так и физическими свойствами самой конструкции. С одной стороны, постоянные изменения температуры и влажности наружного воздуха, происходящие как в течение одного дня (суточные колебания), так и на протяжении всего года (сезонные), заставляют ее работать в достаточно экстремальной ситуации. С другой стороны, гладкая поверхность холодного стекла реагирует на повышенную влажность не так, как, например, обычная оштукатуренная стена: пористая штукатурка до известных пределов способна впитывать и удерживать в себе невидимые глазу водяные пары; стеклянный лист, напротив, собирает их прямо на своей поверхности в крупные капли росы. Поэтому граничащие с зимним садом внутренние помещения дома в той или иной степени подвергаются определенному влиянию такого соседства, которое при отсутствии грамотно устроенного отопления, вентиляции и защиты от излишнего солнечного воздействия может быть весьма негативным. Влажность Для хорошего самочувствия важен показатель относительной влажности, напрямую связанный с температурой: дело в том, что под влиянием даже незначительных изменений температуры происходит постоянное движение и столкновение между собой различных объемов воздуха как внутри, так и снаружи помещения; на границе соприкосновения более теплых масс с более холодными происходит конденсация паров содержащейся в них атмосферной влаги. На холодных поверхностях остекления и несущих профилей показатель влажности может достигать 100%, т.е. происходит выпадение росы, о чем говорилось выше. В случае недостаточной герметизации двойного остекления конденсат атмосферной влаги может скапливаться и между внутренними поверхностями листов стекла, создавая невыигрышный для внешнего вида эффект «запотевания». Система отопления, которая должна поддерживать температуру в заданном диапазоне, какой бы они ни была, всегда имеет поддержку в виде солнечной энергии, беспрепятственно проникающей в помещение благодаря большой остекленной поверхности, однако такая поддержка сама по себе не в состоянии обеспечить требуемую температуру в холодное время года – в этом случае отопление помещения может производиться различными способами. Среди них: подключение к центральной системе отопления дома; автономное электрическое отопление; подогреваемый пол; отопление нагретым в кондиционере свежим воздухом и др. На практике встречаются также удачные комбинации этих систем. Классический вариант конструкции зимнего сада – трехфасадный объем, одной стороной примыкающий к основному зданию. Часто встречаются и другие варианты. Например, в районах старой и тесной застройки, характерной для центра некоторых городов, из-за недостатка площади порой невозможно вынести зимний сад за периметр здания. В этом случае он может быть и двухфасадным, устроенным по углу дома. Такой способ размещения из-за лаконичности и выразительности иногда применяется и при наличии достаточной свободной площади. Независимо от того, является ли в плане зимний сад небольшим выступом по отношению к фасадной стене, или равен ей по протяженности, эффект единения внутреннего и внешнего пространства присутствует в каждом случае, хотя и в разной степени. Этим объясняется большое количество зимних садов, устроенных в самых различных местах – на лоджиях и под ними, на мансардах по фронтону и по коньку крыши, в эркерах и над гаражами: при удачном профессиональном исполнении это переливающееся стеклянным блеском сооружение прекрасно смотрится в самом неожиданном соседстве. Большую роль в формировании архитектурного облика зимнего сада играет его этажность. Двухэтажный объем не просто выводит эффект расширения пространства на более высокий в любом смысле уровень, но зачастую превосходит по выразительности основное здание, сохраняя в этом союзе формальное положение младшего партнера и общую стилевую направленность. Фактически в ряде случаев он становится архитектурной доминантой. Важно правильно выбрать также типы, размеры, количество и размещение оконных и дверных блоков. Обратите внимание: вы определяете месторасположение дверей и окон не только в вертикальных фасадных плоскостях, но и в горизонтальной, то есть в плане. 73.Элективные курсы. Место в образовательном процессе. Элективные курсы (курсы по выбору), обязательные для старшеклассников, играют важную роль в системе профильного обучения на старшей ступени школы. Они связаны, прежде всего, с удовлетворением индивидуальных образовательных интересов, потребностей и склонностей каждого школьника. Именно они по существу и являются важнейшим средством построения индивидуальных образовательных программ, т.к. в наибольшей степени связаны с выбором каждым школьником содержания образования в зависимости от его интересов, способностей, жизненных планов [1]. Среди элективных курсов можно выделить предметные, межпредметные (интегративные), а также курсы, не входящие в базисный учебный план[9]. Задача предметных курсов - углубление и расширение знаний по предметам, входящим в базисный учебный план школы; межпредметных - интеграция знаний учащихся о природе и обществе. Элективные курсы по предметам, не входящим в базисный учебный план, посвящены психологическим, социальным, культурологическим, искусствоведческим проблемам и позволяют дать представление школьникам о более широком спектре возможных направлений приложения своих сил в будущем. Существенным моментом в организации профильного обучения является реализация элективных курсов. Набор элективных курсов на основе базисного учебного плана определяется самой школой (школьный компонент). Элективные курсы характеризуется тем, что из предложенного их набора ученик может выбрать те, которые ему интересны или нужны. Как только курс выбран, он становится таким же, как нормативный: с обязанностью посещать и отчитываться. Элективный курс в профильной школе краткосрочен, но его объем по часам (max 72 часов) выше, чем рекомендуемый объем курсов по выбору для девятиклассников (max 35 часов). Элективные курсы в старшей школе, когда учащиеся уже определились с профилем и приступили к обучению по конкретному профилю, должны быть более систематичными (раз или два раза в неделю), более долгосрочными (не менее 36 часов) и, что самое главное, ставить совсем другие цели, чем это было в 9 классах в рамках предпрофильной подготовки. В 10-11 классах целью элективного курса является расширение, углубление знаний, выработка специфических умений и навыков, знакомство с новыми областями науки в рамках выбранного профиля. Это главные отличия элективных курсов в 9-х классах и в 10-11-х классах, а требования к их разработке и оформлению сходны. Набор элективных курсов на основе базисного учебного плана определяется самой школой. Элективные курсы выполняют три основных функции: 1) «надстройки» профильного курса, когда такой дополненный профильный курс становится в полной мере углубленным; 2) развивают содержание одного из базисных курсов, изучение которого осуществляется на минимальном общеобразовательном уровне, что позволяет поддерживать изучение смежных учебных предметов на профильном уровне или получить дополнительную подготовку для сдачи единого государственного экзамена по выбранному предмету на профильном уровне; 3) способствует удовлетворению познавательных интересов в различных областях деятельности человека. Так как элективные курсы выбираются самими учащимися, они должны соответствовать их потребностям, целям обучения и мотивам выбора курса. Следует отметить, что к Основным мотивам выбора элективных курсов в 10-11 классе, которые следует учитывать при разработке и реализации элективных курсов относятся: подготовка к ЕГЭ по профильным предметам; приобретение знаний и навыков, освоение способов деятельности для решения практических, жизненных задач, уход от традиционного школьного «академизма»; возможности успешной карьеры, продвижения на рынке труда; любопытство; поддержка изучения базовых курсов; профессиональная ориентация; интеграция имеющихся представлений в целостную картину мира. То, что набор элективных курсов определяют сами школьники, ставит учащихся в ситуацию самостоятельного выбора индивидуальной образовательной траектории, профессионального самоопределения. В связи с этим основными принципами обучения должны являться: индивидуальность, доступность, преемственность, результативность. Примеры целей курсов по выбору: развитие любознательности как основы познавательной активности; развитие способностей, склонностей, интересов ребенка; формирование творческого воображения; развитие ключевых компетенций. 74.Биосфера как глобальная экосистема. Биосфе́ра — совокупность частей земной оболочки (лито, гидро и атмосфера), которая заселена живыми организмами, находится под их воздействием и занята продуктами их жизнедеятельности. Это активная оболочка Земли, в которой совокупная деятельность живых организмов проявляется как геохимическая сила планетарного масштаба. БИОСФЕРА, оболочка Земли, в пределах которой существует жизнь. Биосфера включает нижнюю часть атмосферы (15–20 км), верхнюю частьлитосферы и всю гидросферу. Нижняя граница опускается в среднем на 2–3 км на суше и на 1–2 км ниже дна океана. Термин «биосфера» ввел австрийский геолог Э.Зюсс в 1875, тогда как основы учения о биосфере, которые актуальны и в современной науке, были разработаныВ.И.Вернадским. Биосфера состоит из живого, или биотического, и неживого, или абиотического, компонентов. Биотический компонент – это вся совокупность живых организмов (по Вернадскому – «живое вещество»). Абиотический компонент – сочетание энергии, воды, определенных химических элементов и других неорганических условий, в которых существуют живые организмы. Жизнь в биосфере зависит от потока энергии и круговорота веществ между биотическим и абиотическим компонентами. Круговороты веществ называются биогеохимическими циклами. Существование этих циклов обеспечивается энергией Солнца. Земля получает от Солнца ок. 1,3ґ1024калорий в год. Около 40% этой энергии излучается обратно в космос; 15% поглощается атмосферой, почвой и водой; остальная энергия – это видимый свет, первичный источник энергии для всей жизни на Земле. Биосфера является глобальной экосистемой. Как уже было отмечено ранее, биосфера расчленена на геобиосферу, гидробиосферу и аэробиосферу. Гео биосфера имеет подразделения в соответствии с основными средообразующими факторами: терра - биосфера и литобиосфера—в пределах геобиосферы, маринобиосфера (океа-нобиосфера) и аква - биосфера — в составе гидро биосферы. Данные образования называют подсферами. Ведущим средообразующим фактором в их образовании является физическая фаза среды жизни: воздушно-водная в аэробиосфере, водная (пресноводная и солено-водная) в гидробиосфере, твердо-воздушная в террабиосфере и твер-доводная в литобиосфере. В свою очередь, все они распадаются на слои: аэробиосфера — на тропобиосферу и альтобиосферу; гидробиосфера — на фотосферу, дисфотосферу и афотосферу. Структурообразующие факторы здесь, помимо физической среды, энергетика (свет и тепло), особые условия формирования и эволюции жизни — эволюционные направления проникновения биоты на сушу, в ее глубины, в пространства над землей, бездны океана, несомненно, различны. Вместе с апобиос-ферой, парабиосферой и другими под- и надбиосферными слоями они составляют так называемый «слоеный пирог жизни» и геосферы (экосферы) ее существования в пределах границ мегабиосферы Глобальные, региональные и местные круговороты веществ незамкнуты и в рамках иерархии экосистем частично «пересекаются». Это вещественно-энергетическое, а отчасти и информационное «сцепление» обеспечивает целостность экологических надсистем вплоть до биосферы в целом. Общие закономерности организации биосферы. Биосферу формируют в большей степени не внешние факторы, а внутренние закономерности. Важнейшим свойством биосферы является взаимодействие живого и неживого, нашедшего отражение в законе биогенной миграции атомов В. И. Вернадского. Закон биогенной миграции атомов дает возможность человечеству сознательно управлять биогеохимическими процессами как в целом на Земле, так и в ее регионах. Количество живого вещества в биосфере, как известно, не подвержено заметным изменениям. Эта закономерность была сформулирована в виде закона константности количества живого вещества В. И. Вернадского: количество живого вещества биосферы для данного геологического периода есть константа. Практически данный закон является количественным следствием закона внутреннего динамического равновесия для глобальной экосистемы — биосферы. Поскольку живое вещество в соответствии с законом биогенной миграции атомов есть энергетический посредник между Солнцем и Землей, то или его количество должно быть постоянным, или должны меняться его энергетические характеристики. Закон физико-химического единства живого вещества (все живое вещество Земли физико-химически едино) исключает значительные перемены в последнем свойстве. Отсюда для живого вещества планеты неизбежна количественная стабильность. Она характерна в полной мере и для числа видов. Живое вещество как аккумулятор солнечной энергии должно одновременно реагировать как на внешние (космические) воздействия, так и на внутренние изменения. Снижение или увеличение количества живого вещества в одном месте биосферы должно приводить к процессу с точностью наоборот в другом месте, потому что освободившиеся биогены могут быть ассимилированы остальной частью живого вещества или будет наблюдаться их недостаток. Здесь следует учитывать скорость процесса, в случае антропогенного изменения намного более низкую, чем прямое нарушение природы человеком. Правило автоматического поддержания глобальной среды обитания следует из биогеохимических принципов В. И. Вернадского, правил сохранения видовой среды обитания, относительной внутренней непротиворечивости и служит константой наличия в биосфере консервативных механизмов и одновременно подтверждением правила системно-динамической комплементарности. 75.Вода в ландшафте. Вода в ландшафтном дизайне Водоем в нашем саду – это жизненная и эстетическая необходимость, преувеличить данное утверждение невозможно: построив пруд или фонтан, мы совершенно неожиданно находим именно то, чего так не хватало – новую форму самовыражения. Посмотрите: любимое место отдыха будет связано с водой, независимо от того, что вы предпочитаете созерцать – гладь поверхности пруда или говорливый поток горного ручья! Это как новое измерение – непохожий ни на что элемент творчества. Давайте же рассмотрим возможности этого нового измерения. |