Главная страница
Навигация по странице:

  • Гидравлическая характеристика опускных труб контура циркуляции

  • Вскипание воды на входе в опускные трубы

  • Воронкообразование

  • Снос пара из барабана

  • Гидравлическая характеристика подъемных труб контура циркуляции

  • 8. Характеристики и виды движения водного теплоносителя в паровых котлах Гидродинамика водного теплоносителя в паровых котлах


    Скачать 4.43 Mb.
    Название8. Характеристики и виды движения водного теплоносителя в паровых котлах Гидродинамика водного теплоносителя в паровых котлах
    Дата24.01.2020
    Размер4.43 Mb.
    Формат файлаdoc
    Имя файла5132c44.doc
    ТипДокументы
    #105614
    страница18 из 39
    1   ...   14   15   16   17   18   19   20   21   ...   39

    9.2.2.Гидравлические характеристики контура циркуляции


    Контур циркуляции состоит из последовательно включенных элементов. Суммарная гидравлическая характеристика контура представляет собой сумму перепадов давления в этих элементах, взятых при одном и том же расходе GЦ .

    Гидравлическая характеристика опускных труб контура циркуляции

    В современных паровых котлах опускные трубы делаются без обогрева, с хорошей тепловой изоляцией, поэтому их теплообмен с окружающей средой близок к нулю и не учитывается. В этом случае температура воды в опускных трубах и энтальпия hОП по высоте изменяться не будут. Поскольку hОП близка к энтальпии насыщения, плотность воды ρОП будем считать равной ρ'. При hОП = const ΔpУСК=0.

    Вода в опускные трубы попадает из барабана с энтальпией hОП, давление в паровой части барабана pБ (рис.9.39). Под воздействием гидростатического столба воды (нивелирного напора) давление в барабане повышается, и на входе в опускные трубы нивелирный напор составит



    (9.102)

    а в нижнем коллекторе



    (9.103)

    Скорость вертикального движения воды в барабане мала, поэтому ∆pГБ ≈ 0. На входе в опускные трубы скорость воды резко возрастает, что требует затраты энергии на ускорение потока. С учетом местного сопротивления (сопротивления входа) потери давления на входе в опускные трубы составляет



    (9.104)

    Давление на входе в опускные трубы



    (9.105)

    Давление в нижнем коллекторе



    (9.106)






    (9.107)

    где ZОП - суммарный коэффициент сопротивления в опускной трубе.

    По уравнению состояния энтальпия воды на линии насыщения h' однозначно зависит от давления. Поэтому, по высоте опускных труб энтальпия насыщения hўОП будет изменяться эквидистантно изменению давления (рис.9.39). Действительная энтальпия воды в опускных трубах зависит от режима работы экономайзера и барабана. Вода, поступающая из барабана в опускные трубы, может быть недогрета до энтальпии насыщения по давлению в барабане hўБ Недогрев в барабане DhБНЕД определяется из теплового и материального баланса барабана



    (9.108)

    где hЭК - энтальпия воды за экономайзером.

    Недогрев воды в барабане зависит от кратности циркуляции KЦ и энтальпии воды за экономайзером.

    Кратность циркуляции в отдельных контурах котлов высокого давления (p = 8…14 МПа) составляет КЦ = 6…14, сверхвысокого (p = 14…18,5 МПа) - КЦ =5…8. Повышение энтальпии за экономайзером hЭК уменьшает недогрев в барабане. В котлах с кипящим экономайзером недогрев воды в барабане равен нулю. То же - в солевых отсеках котла и в случае подачи всей питательной воды на паропромывочное устройство в чистом отсеке барабана (при этой схеме вода на паро-промывочном устройстве дополнительно нагревается до насыщения за счет теплоты промываемого пара).

    Недогрев воды по ходу ее движения в опускной трубе увеличивается за счет роста давления рОП и h'ОП. В нижнем коллекторе недогрев составит



    (9.109)

    В рассмотренном случае по всей высоте опускной трубы ∆hНЕД > 0 остается однофазной, плотность ее постоянна, не зависит от расхода воды. Постоянной величиной будет и нивелирный напор ∆pОПНИВ = ∆p*НИВ (рис.9.40). Гидравлическая характеристика опускной трубы ∆pОП = ∆p*ОП + ∆pНИВОП получается однозначной. При малых расходах (GЦ < G0) перепад давления ∆рОП = рБ - рН.К отрицателен, т.к. рН.К > рБ, а при GЦ > G0 положителен. Расходу G0 соответствует w0ОП порядка 10 м/с. Скорость в опускных трубах котлов wОП = 1…3 м/с, т.е. wОП < w0ОП и всегда рН.К > рБ



    В опускных трубах может появиться пар за счет закипания воды на входе в опускные трубы, сноса пара из барабана и затягивания паровых воронок, образующихся в барабане.

    Вскипание воды на входе в опускные трубы (явление кавитации) может произойти, если давление на входе в опускные трубы рВХ < рБ а h'ВХ < hБ. При ∆hБНЕД= 0 (hОП = h'Б) это означает, что h'ВХ < hОП и вода будет испаряться.

    Вскипание воды на входе в опускные трубы не допускается, т.е. должно быть обеспечено рВХ > рБ. Из (9.105) видно, что это условие соблюдается при выполнении неравенства



    (9.110)

    или



    (9.111)

    Воронкообразование в барабане может возникнуть при малой высоте слоя жидкости над опускными трубами. Минимальная высота уровня воды в барабане для опускных труб диаметром до 200 мм составляет 400…500 мм. При установке на входе в опускные трубы разного типа решеток и крестовин, минимальная высота уменьшается в 2 раза. Современные мощные котлы имеют барабаны с внутренним диаметром 1600…1800 мм, уровень воды 700…800 мм, что создает достаточный запас по недопущению воронкообразования.

    Снос пара из барабана потоком воды в опускные трубы может происходить при близком расположении ввода пароотводящих труб в барабан от входа в опускные трубы. Если вода, направляющаяся в опускные трубы, имеет скорость больше скорости всплывающих пузырьков пара, то может захватить часть из них с собой и унести в опускные трубы. Для предотвращения захвата пара водой вход в опускные трубы должен быть расположен от выхода пароотводящих труб на расстоянии не менее 250…300 мм, между ними при необходимости следует ставить перегородки.

    В современных котлах внутрибарабанные устройства выполняются таким образом, что снос пара практически отсутствует, среднее истинное паросодержание в опускных трубах = 0,02…0,03. Такое количество пара при конденсации нагревает воду в опускных трубах на ∆hСН = 5…8 кДж/кг.

    Появление пара в опускных трубах отрицательно сказывается на их работе и работе всего контура циркуляции: увеличивается сопротивление движению потока ∆p*ОП, снижается нивелирный напор, так как уменьшается плотность среды



    На рис.9.40 пунктиром показаны кривые (∆p*ОП)сн, (∆pНИВОП)сн, (∆pОП)сн, учитывающие снос пара в опускные трубы. Наличие небольшого количества пара в опускных трубах не опасно.

    Гидравлическая характеристика подъемных труб контура циркуляции

    На рис.9.14 показано распределение давления и энтальпии среды по высоте трубы. Принятые обозначения в конкретном случае подъемных труб контура циркуляции принимают вид

    а) ∆hВХНЕД = ∆hН.КНЕД , расчет ∆hН.КНЕД производится по формуле (9.109);



    где QЭКР - тепловосприятие экрана; HЭЛ - площадь лучевоспринимающей поверхности нагрева рассматриваемого контура, м2; - средний тепловой поток, кВт/м2, определяемый с учетом неравномерностей тепловосприятия;

    г) необходимо учесть ∆hСН - нагрев воды за счет пара в опускных трубах.

    С учетом этих обозначений формула расчета высоты точки закипания HТ.З примет вид



    (9.113)

    Формулу (9.113) можно упростить, учитывая, что сопротивление на экономайзерном участке мало (Rv'G2 << ρ'g ). Если под HЭК понимать разность отметок от точки закипания до оси нижнего коллектора, то HЭК = HТ.З + HДО и в скобках в числителе из HОП необходимо вычесть HДО.

    Сопротивление подъемных труб ∆p*ПОД без нивелирного напора равно сумме сопротивлений

    ∆p*ПОД =∆pЭК + ∆pПО.

    (9.114)

    Нивелирный напор рассчитывается как сумма напоров на экономайзерном ∆pэкНИВ и испарительном ∆pИСПНИВ участках.

    По данным расчета ∆pподНИВ и ∆p*ПОД в зависимости от GЦ или w0 строится гидравлическая характеристика, аналогичная характеристике вертикальной трубы (см. рис.9.18), и полная характеристика с учетом подъемного и возможного опускного движения типа рис.9.25.

    В отводящие трубы поступает пароводяная смесь с паросодержанием хОТВ, равным значению на выходе из подъемных труб. Так как отводящие трубы необогреваемые, то все характеристики двухфазного потока принимаются постоянными. Так как сечение отводящих труб меньше сечения подъемных труб, то скорость пароводяной смеси в них значительно выше.

    Сопротивление отводящих труб ∆p*ОТВ рассчитывается с учетом дополнительного слагаемого ∆pВ.У , показывающего потери энергии на подъем пароводяной смеси выше уровня воды в барабане (см.рис.9.37)



    (9.115)

    Нивелирный напор определяется по высоте отводящих труб



    (9.116)

    Гидравлическая характеристика отводящих труб показана на рис.9.41.



    Гидравлическая характеристика контура естественной циркуляции представляет собой сумму гидравлических характеристик последовательно включенных опускных, подъемных и отводящих труб (рис.9.42)

    ∆pКОНТ =∆pОП +∆pПОД + ∆pОТВ.

    (9.117)



    Решением уравнения движения является расход G0Ц, при котором ∆pКОНТ = 0. По этому расходу определяются соответствующие значения ∆p0ОП, ∆p0ПОД, ∆p0ОТВ и все другие параметры работы контура, проводится проверка надежности работы опускных и подъемных труб и контура в целом.

    Контур циркуляции представляет собой U - образную компоновку труб (вверху замкнутую), и, соответственно, его гидравлическая характеристика похожа на характеристику U - образной трубы.

    Гидравлическая характеристика контура однозначна, рабочая точка (∆pКОНТ=0, GЦ0) устойчива. Каждый элемент контура (опускные, подъемные и отводящие трубы) имеет коллектор или барабан на входе и выходе, т.е. гидравлически обособлен. Значения ∆p0ОП, ∆p0ПОД, ∆p0ОТВ и являются средними по элементу, но внутри элементов в зависимости от их гидравлической и разверочной характеристик возможна область неоднозначности, межтрубная пульсация, режимы застоя и опрокидывания циркуляции. При возможности возникновения этих режимов необходимо анализировать полные гидравлические и разверочные характеристики подъемных труб.
    1   ...   14   15   16   17   18   19   20   21   ...   39


    написать администратору сайта