Александр Архипович Ивин Основы теории аргументации Учебник
Скачать 1.73 Mb.
|
2. Системная аргументацияТрудно указать утверждение, которое обосновывалось бы само по себе, в изоляции от других положений. Обоснование всегда носит системный характер. Включение нового положения в систему других положений, придающую устойчивость своим элементам, является одним из наиболее существенных шагов в его обосновании. Системная аргументация — обоснование утверждения путем включения его в качестве составного элемента в кажущуюся хорошо обоснованной систему утверждений, или теорию. Подтверждение следствий, вытекающих из теории, является одновременно и подкреплением самой теории. С другой стороны, теория сообщает выдвинутым на ее основе положениям определенные импульсы и силу и тем самым содействует их обоснованию. Утверждение, ставшее элементом теории, опирается уже не только на отдельные факты, но во многом также на широкий круг явлений, объясняемых теорией, на предсказание ею новых, ранее неизвестных эффектов, на связи ее с другими теориями и т.д. Анализируемое положение, включенное в теорию, получает ту эмпирическую и теоретическую поддержку, какой обладает теория в целом. Л. Витгенштейн писал о целостности и системности знания: «Не изолированная аксиома бросается мне в глаза как очевидная, но целая система, в которой следствия и посылки взаимно поддерживают друг друга»70. Системность распространяется не только на теоретические положения, но и на данные опыта: «Можно сказать, что опыт учит нас каким-то утверждениям. Однако он учит нас не изолированным утверждениям, а целому множеству взаимозависимых предложений. Если бы они были разрознены, я, может быть, и сомневался бы в них, потому что у меня нет опыта, непосредственно связанного с каждым из них»71. Основания системы утверждений, замечает Витгенштейн, не поддерживают эту систему, но сами поддерживаются ею. Это значит, что надежность оснований определяется не ими самими по себе, а тем, что над ними может быть надстроена целостная теоретическая система. Сомнение, как разъясняет Витгенштейн, касается не изолированного предложения, но всегда некоторой ситуации, в которой я веду себя определенным образом. Например, когда я достаю из своего почтового ящика письма и смотрю, кому они адресованы, я проверяю, все ли они адресованы мне, и при этом я твердо придерживаюсь убеждения, что меня зовут Б.П. И поскольку я продолжаю проверять таким образом, для меня ли все эти письма, я не могу осмысленно сомневаться в своем имени. Сомнение имеет смысл только в рамках некоторой, как выражается Витгенштейн, «языковой игры», или сложившейся практики деятельности, при условии принятия ее правил. Поэтому бессмысленно мне сомневаться, что у меня две руки или что Земля существовала за 150 лет до моего рождения, ибо нет такой практики, внутри которой при принятии ее предпосылок можно было бы сомневаться в этих вещах. Согласно Витгенштейну эмпирические предложения могут быть в некоторых ситуациях проверены и подтверждены в опыте. Но есть ситуации, когда они, будучи включенными в систему утверждений, в конкретную практику, не проверяются и сами используются как основание для проверки других предложений. Так обстояло дело в упомянутой ситуации у почтового ящика. «Меня зовут Б.П.» — эмпирическое предложение, используемое как основание для проверки утверждения «Все письма адресованы мне». Однако можно придумать такую историю («практику»), когда мне придется на базе других данных и свидетельств проверять, зовусь ли я Б.П. В обоих случаях статус эмпирического предложения зависит от контекста, от той системы утверждений, элементом которой оно является. Вне контекста бессмысленно спрашивать, является ли данное предложение эмпирически проверяемым или я его твердо придерживаюсь. Когда мы твердо придерживаемся некоторого убеждения, мы обычно более склонны сомневаться в источнике противоречащих данных, нежели в нем самом. Однако когда эти данные становятся настолько многочисленными, что мешают использовать рассматриваемое убеждение для оценки других утверждений, мы можем все-таки расстаться с ним. Помимо эмпирических, Витгенштейн выделяет методологические предложения. Они тоже случайны в том смысле, что их отрицание не является логическим противоречием. Однако они не являются проверяемыми ни в каком контексте. Витгенштейн предупреждает, что внешнее сходство может запутать нас и побудить относиться одинаково к эмпирическим предложениям типа: «Существуют рыжие собаки» и методологическим типа: «Существуют физические объекты». Но дело в том, что мы не можем вообразить ситуацию, в которой мы могли бы убедиться в ложности методологического предложения. Это зависит уже не от контекста, а от совокупности всего воображаемого опыта. Витгенштейн выделяет также группу предложений, в которых я едва ли могу сомневаться, и предложения, которые трудно классифицировать (например, утверждение, что я никогда не был в другой солнечной системе). Свои идеи о различном статусе предложений Витгенштейн представляет в метафоре реки. Эмпирические предложения — это текущие и меняющие свой облик воды реки. Некоторые предложения, имеющие форму эмпирических, отвердели и образовали русло реки. Надо различать движение воды и сотрясения грунта, образующего дно и берега. Однако и ложе состоит не из одних твердых камней, но и из песка, движущегося так же легко, как и вода. В свое время Декарт настаивал на необходимости возможно более полного и радикального сомнения. Согласно Декарту, вполне достоверно лишь его знаменитое cogito — положение «Я мыслю, следовательно, существую». Витгенштейн придерживается прямо противоположной позиции. Он считает, что для сомнений нужны веские основания, более того, есть категории утверждений, в приемлемости которых мы не должны сомневаться никогда. Выделение этих категорий утверждений непосредственно связано с системным характером человеческого знания, с его внутренней целостностью и единством. Связь обосновываемого утверждения с той системой утверждений, в рамках которой оно выдвигается и функционирует, существенным образом влияет на эмпирическую проверяемость этого утверждения и, соответственно, на ту аргументацию, которая может быть выдвинута в его поддержку. В контексте своей системы («языковой игры», «практики») утверждение может приниматься в качестве несомненного, не подлежащего критике и не требующего обоснования по меньшей мере в двух случаях. Во-первых, если отбрасывание этого утверждения означает отказ от определенной практики, от той целостной системы утверждений, неотъемлемым составным элементом которой оно является. Таково, к примеру, утверждение «Небо голубое»: оно не требует проверки и не допускает сомнения, иначе будет разрушена вся практика визуального восприятия и различения цветов. Отбрасывая утверждение «Солнце завтра взойдет», мы подвергаем сомнению всю естественную науку. Сомнение в достоверности утверждения «Если человеку отрубить голову, то обратно она не прирастет» ставит под вопрос всю физиологию и т.д. Эти и подобные им утверждения обосновываются не эмпирически, а ссылкой на ту устоявшуюся и хорошо апробированную систему утверждений, составными элементами которой они являются и от которой пришлось бы отказаться, если бы они оказались отброшенными. Дж. Мур задавался в свое время вопросом: как можно было бы обосновать утверждение «У меня есть рута»? Согласно Витгенштейну, ответ на этот вопрос является простым: данное утверждение очевидно и не требует никакого обоснования в рамках человеческой практики восприятия; сомневаться в нем значило бы поставить под сомнение всю эту практику. Во-вторых, утверждение должно приниматься в качестве несомненного, если оно сделалось в рамках соответствующей системы утверждений стандартом оценки иных ее утверждений и в силу этого утратило свою эмпирическую проверяемость. Среди таких утверждений, перешедших из разряда описаний в разряд ценностей, можно выделить два типа: (1) утверждения, не проверяемые в рамках определенной, достаточно узкой практики, и (2) утверждения, не проверяемые в рамках любой, сколь угодно широкой практики. Примером утверждений первого типа является утверждение об имени человека, просматривающего почту: пока он занят этой деятельностью, он не может сомневаться в своем имени. Ко второму типу относятся утверждения, называемые Витгенштейном методологическими: «Существуют физические объекты», «Я не могу ошибаться в том, что у меня есть рука» и т.п. Связь этих утверждений с другими нашими убеждениями практически всеобъемлюща. Подобные утверждения зависят не от конкретного контекста, а от совокупности всего воображаемого опыта, в силу чего пересмотр их практически невозможен. Сходным образом обстоит дело с утверждениями «Земля существовала до моего рождения», «Объекты продолжают существовать, даже когда они никому не даны в восприятии» и т.п.: они настолько тесно связаны со всеми другими нашими утверждениями, что практически не допускают исключения из нашей системы знания. Таким образом, аргументация, приводимая в поддержку какого-то утверждения, существенным образом зависит от связей последнего с той системой утверждений, или практикой, в рамках которой оно используется. Можно выделить пять типов утверждений, по-разному относящихся к практике их употребления: 1) утверждения, относительно которых не только возможно, но и разумно сомнение в рамках конкретной практики; 2) утверждения, в отношении которых сомнение возможно, но не является разумным в данном контексте (например, результаты надежных измерений; информация, полученная из надежного источника); 3) утверждения, не подлежащие сомнению и проверке в данном контексте под угрозой разрушения этого контекста; 4) утверждения, сделавшиеся стандартами оценки иных утверждений и потому не проверяемые в рамках данной практики, однако допускающие проверку в других контекстах; 5) методологические утверждения, не проверяемые в рамках любой практики72. Не вполне ясным является отношение между утверждениями, сомнение в которых способно разрушить конкретную практику (3), и утверждениями, утратившими свой эмпирический характер и превратившимися в стандарты оценки иных утверждений (4). Можно предположить, что первые всегда входят в состав вторых и являются стандартами оценки других утверждений. Аргументация в поддержку утверждений (3) предполагает ссылку на ту систему утверждений, или ту практику, неотъемлемым элементом которой является рассматриваемое утверждение. Аргументация в поддержку утверждений (4) основывается на выявлении их оценочного характера, их необходимости в рамках конкретной практики и, наконец, в указании на эффективность этой практики. Оба типа утверждений можно сделать предметом сомнения, проверки и обоснования, выйдя за пределы их практики, поместив их в более широкий или просто другой контекст. Что касается методологических утверждений, входящих во всякую мыслимую практику, то аргументация в их поддержку может опираться только на убеждение в наличии тотального соответствия между совокупностью наших знаний и внешним миром, на уверенность во взаимной согласованности всех наших знаний и опыта. Однако общая ссылка на совокупный, не допускающий расчленения опыт обычно выглядит не особенно убедительной. Иногда высказывается мнение, что системный характер нашего знания делает неоправданным вопрос об обосновании любого отдельно взятого утверждения. Всякое более или менее абстрактное предложение, лишь косвенно поддерживаемое непосредственным опытом, может считаться истинным только в рамках какой-то концепции или теории. За ее пределами оно просто бессмысленно, и значит, не может быть ни обосновано, ни опровергнуто. «Мы можем говорить и говорим разумно о том или ином предложении как истинном, — пишет, например, У. Куайн, — скорее тогда, когда мы обращаемся к положениям фактически существующей в данный момент теории, принятой хотя бы в качестве гипотезы. Осмысленно применять понятие “истинный” к такому предложению, которое сформулировано в терминах данной теории и понимается в рамках постулированной в ней реальности»73. Даже такие утверждения, как «Брут убил Цезаря» и «Атомный вес натрия — 23», значимы лишь относительно определенной теории. Она представляется нам настолько естественной и очевидной, что ускользает от нашего внимания. Вряд ли эта крайняя позиция верна. Обоснованность утверждения во многом зависит от той системы представлений, в которую оно включено. Но эта зависимость не абсолютна. Нельзя сказать, что утверждение, истинное в рамках одной теории, может стать ложным в свете какой-то иной теории. Если бы это было так, понятие истины оказалось бы вообще не приложимым к отдельным утверждениям. С темой системности обоснования связан и известный тезис Дюгема—Куайна о возможности сохранения любой гипотезы путем соответствующих изменений той теоретической системы, в рамках которой она выдвигается. Как пишет Куайн, «любое высказывание может во что бы то ни стало сохранять свою истинность, если мы проделаем достаточно решительную корректировку в каком-то ином разделе системы»74. Опираясь на данный тезис, можно сказать, что любое произвольное утверждение теоретической системы является истинным «во что бы то ни стало»: ценой соответствующих компенсирующих модификаций в теории любое из входящих в нее положений может быть сохранено перед лицом явно противоречащих ему эмпирических данных. Убедительных доводов в поддержку тезиса Дюгема—Куайна приведено не было. Сославшись на такую гипотезу, как «На Элмстрит есть кирпичные дома», Куайн замечает, что даже это утверждение, «столь уместное в чувственном опыте... может сохранить силу перед лицом противоречащих ему переживаний с помощью защитной галлюцинации или внесения поправок в высказывания, которые именуются законами логики»75. Ссылка на галлюцинацию несерьезна, аргумент о возможном изменении логики не убедителен. Как показывает А.Грюнбаум, нельзя доказать общее положение, что теорию можно модифицировать так, чтобы любая относящаяся к ней гипотеза была непременно сохранена. Для каждого частного случая теории необходимо особое доказательство существования такой модификации76. Таким образом, системность обоснования не означает, что отдельно взятое эмпирическое утверждение не может быть ни обосновано, ни опровергнуто вне рамок той теоретической системы, к которой оно принадлежит. Важным, но пока почти не исследованным способом обоснования теоретического утверждения является внутренняя перестройка теории, в рамках которой оно выдвинуто. Эта перестройка, или переформулировка, предполагает введение новых образцов, норм, правил, оценок, принципов и т.п., меняющих внутреннюю структуру как самой теории, так и постулируемого ею «теоретического мира». Новое научное, теоретическое положение складывается не в вакууме, а в определенном теоретическом контексте. Контекст теории определяет конкретную форму выдвигаемого положения и основные перипетии его последующего обоснования. Если научное предположение берется в изоляции от той теоретической среды, в которой оно появляется и существует, остается неясным, как ему удается в конце концов стать элементом достоверного знания. Выдвижение предположений диктуется динамикой развития той теории, к которой они относятся, стремлением ее охватить и объяснить новые факты, устранить внутреннюю несогласованность и противоречивость и т.д. Во многом поддержка, получаемая новым положением от теории, связана с внутренней перестройкой последней. Эта перестройка может заключаться во введении номинальных определений (определений-требований) вместо реальных (определений-описаний), принятии дополнительных соглашений относительно изучаемых объектов, уточнении основополагающих принципов теории, изменении иерархии этих принципов и т.д. Теория придает входящим в нее положениям определенную силу. Эта поддержка во многом зависит от положения утверждения в теории, в иерархии составляющих ее утверждений. Перестройка теории, обеспечивающая перемещение какого-то утверждения от ее «периферии» к ее «ядру», сообщает этому утверждению большую системную поддержку. Несколько простых примеров пояснят эту сторону дела. Хорошо известно, что жидкость есть такое состояние вещества, при котором давление передается во все стороны равномерно. Иногда эту особенность жидкости кладут в основу самого ее определения. Если бы вдруг обнаружилось такое состояние вещества, которое во всем напоминало бы жидкость, но не обладало бы, однако, свойством равномерной передачи давления, мы обязаны были бы не считать это состояние жидкостью. Не всегда жидкость определялась так. В течение довольно долгого времени утверждение, что жидкость передает давление во все стороны равномерно, являлось только предположением. Оно было проверено для многих жидкостей, но его приложимость ко всем иным, еще не исследованным жидкостям оставалась проблематичной. В дальнейшем, с углублением представлений о жидкости, это утверждение превратилось в эмпирическую истину, а затем и в определение жидкости как особого состояния вещества и стало, таким образом, тавтологией. За счет чего осуществился этот переход от предположения к тавтологии? Здесь действовали два взаимосвязанных фактора. С одной стороны, привлекался все новый опытный материал, относившийся к разным жидкостям и подтверждавший рассматриваемое утверждение. С другой стороны, углублялась и перестраивалась сама теория жидкости, включившая в конце концов это утверждение в свое ядро. Сходным образом, известный химический закон кратных отношений первоначально был простой эмпирической гипотезой, имевшей к тому же случайное и сомнительное подтверждение. После работ английского химика В.Дальтона химия была радикально перестроена. Положение о кратных отношениях сделалось составной частью определения химического состава, и его стало невозможно ни проверить, ни опровергнуть экспериментально. Химические атомы могут комбинироваться только в отношении один к одному или в некоторой другой простой, целочисленной пропорции — сейчас это конструктивный принцип современной химической теории. Подобного рода внутреннюю перестройку теории можно попытаться проиллюстрировать на упрощенном примере. Допустим, нам надо установить, что объединяет между собой следующие города: Вадуц, Валенсия, Валлетта, Ванкувер, Вена, Вьентьян. Сразу можно выдвинуть предположение, что это — города, являющиеся столицами. Действительно, Вьентьян — столица Лаоса, Вена — Австрии, Валлетта — Мальты, Вадуц — Лихтенштейна. Но Валенсия — не столица Испании, а Ванкувер — не столица Канады. Вместе с тем Валенсия — главный город одноименной испанской провинции, а Ванкувер — одноименной канадской провинции. Чтобы сохранить исходную гипотезу, мы должны соответствующим образом уточнить определение понятия столицы. Будем понимать под «столицей» главный город государства или его территориальной части: провинции, области и т.п. В таком случае Валенсия — столица провинции Валенсия, а Ванкувер — столица провинции Ванкувер. Благодаря перестройке «мира столиц» мы добились того, что наше исходное предположение стало истинным. Теория дает составляющим ее утверждениям дополнительную поддержку. Чем крепче сама теория, чем она яснее и надежней, тем большей является такая поддержка. В силу этого совершенствование теории, укрепление ее эмпирической базы и прояснение ее общих, в том числе философских и методологических предпосылок является одновременно существенным вкладом в обоснование входящих в нее утверждений. Среди способов прояснения теории особую роль играют выявление логических связей ее утверждений, минимизация ее исходных допущений, построение ее в форме аксиоматической системы и, наконец, если это возможно, ее формализация. «Если мы требуем от наших теорий все лучшей проверяемости, — пишет К.Поппер, — то оказывается неизбежным и требование их логической строгости и большего информативного содержания. Все множество следствий теории должно быть получено дедуктивно; теорию, как правило, можно проверить лишь путем непосредственной проверки отдаленных ее следствий — таких следствий, которые трудно усмотреть интуитивно»77. При аксиоматизации теории некоторые ее положения избираются в качестве исходных, а все остальные положения выводятся из них чисто логическим путем. Исходные положения, принимаемые без доказательства, называются аксиомами (постулатами), положения, доказываемые на их основе, — теоремами. Аксиоматический метод систематизации и прояснения знания зародился еще в античности и приобрел большую известность благодаря «Началам» Евклида — первому аксиоматическому истолкованию геометрии. Сейчас аксиоматизация используется в математике, логике, а также в отдельных разделах физики, биологии и др. Аксиоматический метод требует высокого уровня развития аксиоматизируемой содержательной теории, ясных логических связей ее утверждений. С этим связана довольно узкая его применимость и наивность попыток перестроить всякую науку по образцу геометрии Евклида. Кроме того, как показал австрийский логик и математик К.Гёдель, достаточно богатые научные теории (например, арифметика натуральных чисел) не допускают полной аксиоматизации. Это говорит об ограниченности аксиоматического метода и невозможности полной формализации научного знания. Построение научной теории в форме аксиоматизированной дедуктивной системы не является идеалом и той конечной целью, достижение которой означает предел совершенствования теории. |