Курсовая работа по информатике.. Аппроксимация функции методом наименьших квадратов
Скачать 229.38 Kb.
|
Расчётные формулы.Часто при анализе эмпирических данных возникает необходимость найти функциональную зависимость между величинами x и y, которые получены в результате опыта или измерений. Хi (независимая величина) задается экспериментатором, а yi, называемая эмпирическими или опытными значениями получается в результате опыта. Аналитический вид функциональной зависимости, существующей между величинами x и y обычно неизвестен, поэтому возникает практически важная задача - найти эмпирическую формулу , (1) (где - параметры), значения которой при возможно мало отличались бы от опытных значений . Согласно методу наименьших квадратов наилучшими коэффициентами считаются те, для которых сумма квадратов отклонений найденной эмпирической функции от заданных значений функции (2) будет минимальной. Используя необходимое условие экстремума функции нескольких переменных – равенство нулю частных производных, находят набор коэффициентов , которые доставляют минимум функции , определяемой формулой (2) и получают нормальную систему для определения коэффициентов : (3) Таким образом, нахождение коэффициентов сводится к решению системы (3). Вид системы (3) зависит от того, из какого класса эмпирических формул мы ищем зависимость (1). В случае линейной зависимости система (3) примет вид: (4) В случае квадратичной зависимости система (3) примет вид: (5) В ряде случаев в качестве эмпирической формулы берут функцию, в которую неопределенные коэффициенты входят нелинейно. При этом иногда задачу удается линеаризовать т.е. свести к линейной. К числу таких зависимостей относится экспоненциальная зависимость (6) где a1и a2 неопределенные коэффициенты. Линеаризация достигается путем логарифмирования равенства (6), после чего получаем соотношение (7) Обозначим и соответственно через и , тогда зависимость (6) может быть записана в виде , что позволяет применить формулы (4) с заменой a1 на и на . График восстановленной функциональной зависимости y(x) по результатам измерений (xi, yi), i=1, 2…, n называется кривой регрессии. Для проверки согласия построенной кривой регрессии с результатами эксперимента обычно вводят следующие числовые характеристики: коэффициент корреляции (линейная зависимость), корреляционное отношение и коэффициент детерминированности. Коэффициент корреляции является мерой линейной связи между зависимыми случайными величинами: он показывает, насколько хорошо в среднем может быть представлена одна из величин в виде линейной функции от другой. Коэффициент корреляции вычисляется по формуле: (8) (9) где - среднее арифметическое значение соответственно по x, y. Коэффициент корреляции между случайными величинами по абсолютной величине не превосходит 1. Чем ближе к 1, тем теснее линейная связь между x и y. В случае нелинейной корреляционной связи условные средние значения располагаются около кривой линии. В этом случае в качестве характеристики силы связи рекомендуется использовать корреляционное отношение, интерпретация которого не зависит от вида исследуемой зависимости. Корреляционное отношение вычисляется по формуле: (10) где а числитель характеризует рассеяние условных средних около безусловного среднего . Всегда . Равенство = соответствует случайным некоррелированным величинам; = тогда и только тогда, когда имеется точная функциональная связь между xи y. В случае линейной зависимости y от x корреляционное отношение совпадает с квадратом коэффициента корреляции. Величина используется в качестве индикатора отклонения регрессии от линейной. Корреляционное отношение является мерой корреляционной связиyc x в какой угодно форме, но не может дать представления о степени приближенности эмпирических данных к специальной форме. Чтобы выяснить насколько точно построен5ная кривая отражает эмпирические данные вводится еще одна характеристика - коэффициент детерминированности. Коэффициент детерминированности определяется по формуле: (11) где Sост = - остаточная сумма квадратов, характеризующая отклонение экспериментальных данных от теоретических. Sполн - полная сумма квадратов, где среднее значение yi. - регрессионная сумма квадратов, характеризующая разброс данных. Чем меньше остаточная сумма квадратов по сравнению с общей суммой квадратов, тем больше значение коэффициента детерминированности r2, который показывает, насколько хорошо уравнение, полученное с помощью регрессионного анализа, объясняет взаимосвязи между переменными. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями y. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений y. Коэффициент детерминированности всегда не превосходит корреляционное отношение. В случае, когда выполняется равенство то можно считать, что построенная эмпирическая формула наиболее точно отражает эмпирические данные. |