Главная страница
Навигация по странице:

  • 13 .Предсказание землетрясений

  • Сила землетрясения по шкале Рихтера (чем больше величина, тем разрушительнее землетрясение) Количество землетрясений в год

  • 4-4,9 6200 5-5,9

  • 7-7,9 18

  • Составление звездных каталогов

  • 15. Труды Эйнштейна: помимо теории относительности

  • Периодические издания

  • Пять нерешенных проблем науки. Артур уиггинс, чарльз уинн пять нерешенных проблем науки рисунки Сидни Харриса


    Скачать 2.98 Mb.
    НазваниеАртур уиггинс, чарльз уинн пять нерешенных проблем науки рисунки Сидни Харриса
    АнкорПять нерешенных проблем науки.doc
    Дата11.02.2017
    Размер2.98 Mb.
    Формат файлаdoc
    Имя файлаПять нерешенных проблем науки.doc
    ТипКнига
    #2574
    КатегорияФизика
    страница16 из 18
    1   ...   10   11   12   13   14   15   16   17   18


    11. Земля: история недр

    В ходе формирования Земли тяготение сортировало первичный материал в соответствии с его плотностью: более плотные составляющие опускались к центру, а менее плотные плавали сверху, образовав в итоге кору. На рис. 1.8 представлена Земля в разрезе.

    Кора — внешняя оболочка. Она обладает наименьшей плотностью и расколота на многочисленные тонкие и жесткие каменные плиты, медленно движущиеся ввиду перемещения нижележащей мантии.

    Мантия — следующая оболочка. Она самая толстая из всех оболочек, относительно теплая и жидкая по сравнению с корой, имеет горячие точки, порождающие конвекционные потоки (представьте завихрения в закипающей воде, только значительно медленнее движущиеся). Потоки в мантии перемещают плиты, вызывая землетрясения, вулканические извержения, расширение морского дна и дрейф континентов.



    Далее идет горячее жидкое внешнее ядро, состоящее из плотного железа и никеля и плещущееся ввиду вращения Земли. Земной магнетизм, возможно, вызван местным движением внутри этой оболочки.

    Самая нижняя оболочка именуется внутренним ядром. Она хотя и состоит из расплавленного железа и никеля, из-за огромного давления оказывается твердой и самой плотной оболочкой.

    За подробностями процесса создания этой модели и подтверждающими ее опытными данными обращайтесь к нашей книге Пять крупнейших представлений в науке (The Five Biggest Ideas in Science. N.Y.: John Wiley & Sons, Inc., 1997).

    Следующие узлы Всемирной Паутины содержат свежую информацию и прекрасные иллюстративные материалы:

    www.hartrao.ac.za/geodesy/tectonics.html http://pubs.usgs.gov/peubications/text/dynamic.html www.seismo.unr.edu/ftp/pub/louie/class/100/plate-tectonics.html http://scign.jpl.nasa.gov/lwarn/plate/htm

    12. Теория хаоса

    О тягость легкости, смысл пустоты! Бесформенный хаос прекрасных форм!

    У. Шекспир. Ромео и Джульетта

    Как уже говорилось в гл. 5, хаос не следует путать с произволом. Хаос означает скорее чрезвычайную восприимчивость конечного результата к малым изменениям в начальных условиях. Как поется в старой колыбельной:

    Не было гвоздя —

    Подкова пропала.

    Не было подковы —

    Лошадь захромала.

    Лошадь захромала —

    Командир убит.

    Конница разбита,

    Армия бежит.

    Враг вступает

    В город,

    Пленных не щадя,

    Оттого что в кузнице

    Не было гвоздя!

    [Гвоздь и подкова.

    Пер. с англ. С. Маршака]

    До 1960-х годов существовал некий сугубо математический метод, как оказалось, связанный с теорией хаоса. Гастон Морис Жулиа, математик из Алжира, после ранения в сражениях Первой мировой войны вынужден был носить на лице кожаную повязку, защищавшую сильно искалеченный нос. Из-за многочисленных операций ему приходилось долго скитаться по госпиталям, где, чтобы как-то скоротать время, он занимался математическими выкладками. В 25 лет он пишет «Записку о приближении рациональных функций». Работу он делал в связи с темой, объявленной в 1915 году Французской академией наук на соискание главной премии 1918 года, которой и удостоился; хотя французский математик и астроном Пьер Жозеф Луи Фату (1878-1929) опубликовал в декабре 1917 года работу на ту же тему, однако Жулиа отослал свою статью в Академию наук раньше. Функция представляет собой математическое правило вычисления наподобие следующего: f(x) = х2 + const. Если х = 2, а const = 3, то значение функции составит 7. Приближение (итерация) осуществляется использованием вычисленного для /значения в качестве следующего значения для х. Итак, если х = 7, то f (х) = 52, и т. д. Жулиа исследовал более сложные выражения. Особо его занимали функции и значения, при которых возможно многократное приближение без бесконечного роста итоговой величины [самой функции]. Значения х, для которых повторяющиеся итерации давали конечный результат, стали именоваться пленниками [обычно говорят о множестве точек притяжения, или аттракторах]. При стремлении к бесконечности итоговых величин их называют «беглецами» [обычно говорят о множестве точек отталкивания, или репеллерах]. Вычисления велись вручную и были крайне трудоемкими даже для простых функций. Хотя Жулиа и обрел некую славу в математических кругах, его труд был основательно забыт, и вспомнили о нем уже в 1970-е годы.

    Бенуа Маидельброта, родившегося в Польше в 1924 году, со статьей Жулиа познакомил в 1945 году родной дядя, профессор математики. В то время идеи Жулиа его не заинтересовали. Но спустя 30 лет после головокружительной научной карьеры Мандельброт очутился в компании IBMи обратил мощь ЭВМ на итеративные вычисления Жулиа. Мандельброт первым разработал метод графического построения, когда ЭВМ выводит на экран образ схождения и расхождения приближаемой функции.





    Рис. 1.9. Множество Мандельброта

    Прекрасные образы, порождаемые методами итерации Мандельброта и Жулиа, способствовали одно время появлению бесчисленных книг и узлов Всемирной Паутины. Вот некоторые из них:

    Gleick J. Making a New Science. N.Y.: Viking Penguin, 1987.

    Exploring Chaos — A Guide to the New Science of Disorder / Nina Hall (Ed.). N.Y.: W. W. Norton & Company, 1991.

    http://hypertextbook.com/chaos

    www.wfu.edu/

    petrejh4/chaosind.htm

    В 2002 году Стивен Вулфрем издал книгу по смежной тематике ANewKindofScience(см. www.Wolfram.com). Его труд основан на собственных исследованиях в области клеточных автоматов, представляющих собой ряд одинаково запрограммированных автоматов, иначе «клеток», взаимодействующих друг с другом по определенным правилам. С помощью очень простых правил можно создать очень сложные образы. Некоторые из этих образов очень похожи на природные объекты, однако установление связи между математикой хаоса и пригодным описанием реального мира все еще ждет своего часа.

    13 .Предсказание землетрясений

    Предсказаний землетрясений сегодня много. Поисковые машины в Интернете на запрос «Предсказание землетрясений» выдадут вам более 50 тыс. узлов Всемирной Паутины. Некоторые предсказания делаются на основе «данных» экстрасенсов (см.: WynnCharles М., WigginsArthurW., HarrisSidney. Quantum Leaps in the Wrong Direction: Where Real Science Ends... and Pseudoscience Begins. Washington, 2001). Другие усилия связаны с соотнесением землетрясений с земным электричеством, поведением животных, расположением планет или иными явлениями. Несмотря на ошибочность большинства прогнозов, хотя бы один непременно оказывается верным.

    Предположим, приятель предлагает вам пари: «Ставлю 20 долларов на то, что в следующем месяце произойдет крупное землетрясение в помеченной точками вот здесь на карте области».



    Рис. I.10. Зоны землетрясений

    Не принимайте вызова. Ваш приятель наверняка выиграет. Помеченная точками область на карте (рис. 1.10) соответствует границам плит, составляющих земную кору. Когда конвенционные потоки в мантии (см.: Список идей, 11. Земля: история недр) увлекают за собой плиты, происходят землетрясения. Хотя некоторые землетрясения случаются и в иных местах, помимо оконечностей плит, именно на оконечности и приходится подавляющая часть таких событий. Статистические данные о землетрясениях различной силы за год таковы:

    Сила землетрясения по шкале Рихтера (чем больше величина, тем разрушительнее землетрясение)

    Количество землетрясений в год

    4-4,9

    6200

    5-5,9

    800

    6-6,9

    120

    7-7,9

    18

    Заметим, что условия пари были довольно туманны. Что такое крупное землетрясение? Если речь идет о значениях по шкале Рихтера выше 6 баллов, то таких событий происходит более десятка в месяц и преимущественно в помеченной точками области. Выражения «за месяц» и в «помеченной области» довольно расплывчаты. Если вы живете в пределах данной области, подобно миллионам других людей, нужно ли вам уезжать отсюда? Данное предсказание сообщает слишком мало сведений, чтобы представлять хоть какую-то ценность. В 1970-е годы некоторые геологи были настроены оптимистично в отношении точного и надежного предсказания землетрясений. Появилась даже разновидность теории хаоса, названная теорией катастроф, которая представлялась пригодной для предсказания таких неожиданных событий, как потеря устойчивости у балок, растрескивание асбестоцементных плит, а также землетрясения.

    Однако выяснилось, что построение математических моделей поведения внутренних оболочек Земли столь же трудно, как и построение моделей поведения земной атмосферы. Нелегко составить уравнение, точно описывающее поведение модели, и даже приближенные уравнения оказываются на редкость нелинейными, выказывая крайнюю чувствительность к начальным условиям, свойственным хаотическим системам. К тому же получение сведений о текущем состоянии пород внутри коры и мантии сложнее, чем измерение параметров атмосферы, ввиду недоступности недр коры и мантии.

    В статье 1997 года (журнал Science: [Geller R. J., Jackson D. D., Kagan Y. Y, Mulargia F. Earthquakes cannot be predicted // Science, 1997. Vol. 275]) известные геологи Роберт Геллер из Токийского, Дэвид Джексон и Ян Каган из Калифорнийского университетов и Франческо Муларджа из Университета Болоньи (Италия) утверждают, что «конкретные землетрясения, похоже, изначально непредсказуемы». За подробностями обращайтесь на сайт Всемирной Паутины:

    http://scec.ess.ucla.edu/ykagan/perspective.html

    Вот еще неплохие источники:

    http://quake.wr.usgs.gov/research/parkfleld /

    www.nature.com/nature/debates/earthquake/equake_ frameset.html

    Составление звездных каталогов

    Следующий неполный перечень звездных каталогов отражает стремление людей к упорядочению окружающего мира и поиску определенных закономерностей. Намечаются еще более грандиозные замыслы по созданию космических обсерваторий, в том числе на Луне и Марсе.

    Звезды именуются согласно каталогу, где они встречаются. Многие яркие звезды обозначают согласно приводимым в каталоге Байера названиям.

    Наиболее ярким звездам каждого созвездия Байер присваивал буквы греческого алфавита в порядке убывания их светимости. Например, Полярная звезда именуется Р UrsaeMinoris(а Малой Медведицы), поскольку она самая яркая в созвездии. Другим примером может служить первая видимая звезда—спутник черной дыры, названная HDE 226868 потому, что впервые появилась в расширенном каталоге Генри Дрейпера, и, таким образом, ее местонахождение там соответствует числу 226868.

    Год

    Название каталога

    и обозначение

    звезд

    Составитель

    Количество

    небесных

    тел

    Примечания

    350 до н. э.

    300 до н. э.




    Ши Шэнь

    Тимохарис

    800

    Китай Первый настоя-щий звездный каталог

    130дон. э.




    Гиппарх

    1080




    120 н.э.

    Альмагест

    Клавдий Птолемей

    1022

    См. примечание 1

    1540 н.э.

    De le Stelle Fisse

    Алесандро Пикколомини




    48 греческих созвездий

    1602 н. э.




    Тихо Браге

    Ок. 1000

    См. примечание 2

    1603

    Uranometrio

    (перечисляются

    в виде: греческая

    буква плюс латин-

    ское наименова-

    ние созвездия)

    Иоганн Байер




    Красочный;

    координаты взяты из данных Браге

    1678




    Эдмунд Галлей




    Первый каталог

    небесной сферы

    Южного

    полушария

    1690

    Sternverzeichnis

    Иоганн Гевелий




    Оспаривает выводы Галлея

    1725

    Hisloria Coelestis

    Britannica

    Джон Флемстид

    3000

    Первый королев-

    ский астроном;

    см. примечание 3

    1762




    Джеймс Брадлей

    60 000

    Третий королевский астроном

    1771

    Туманности, получившие в наименовании букву М

    Шарль Мессье

    Более 100

    См. гл. 6

    1801




    Иоганн Боде




    Воспользовался прежними сведениями

    1863

    Воппег-

    Durchmustemng

    (BD + CD + CPD)*

    Фридрих В. А.

    Аргеландер и др.

    1 160 000

    Боннская

    обсерватория

    1864

    General Catalog

    of Nebulae (GC)

    Фридрих

    Вильгельм

    Гершель,

    Каролина

    Гершель,

    Джон У. Гершель

    2500

    См. примечание 4

    1888

    New General

    Catalog

    of Nebulae and

    Star Clusters

    (NGC и 1С)"

    Дж.Л. Э.Дрейер

    13 000

    См. примечание 5

    1918-1924

    Henry Draper

    Catalog

    (HD и HDE)

    Эдуард Ч.

    Пикеринг,

    Энни Джамп

    Кэннон

    400 000

    См. примечание 6

    1966

    Смитсоновская

    астрономическая

    обсерватория




    260 000

    Маунт-

    Паломар и др.

    1989

    Hipparcos (HIP)

    и Tycho (TYC)




    2 500 000

    Точность

    1979-

    продол-

    жается

    Guide Star




    1 млрд

    Для наведения

    [телескопа]

    Хаббла

    * BD — Боннское обозрение, каталог в 4 томах и приложенный к нему большой атлас неба на 324 188 звезд (дополнен Э. Шёнфельдом в 1886 году до 457 857 еще 133 659 звездами), видимых в Северном полушарии; CD — через 50 лет после составления Ф. Аргеландером каталога Боннское обозрение в Аргентине (Кордовская обсерватория) вышло продолжение для видимых звезд Южного неба «Кордовское обозрение неба» (Cordoba Durchmusterung — CD), включающее уже 578 802 звезды и составленное в 1892—1914 годах коллективом обсерватории под руководством Джона Томе (1843-1908); было доведено до Южного полюса в 1930 году; CPD (Cape Photographic Durchmusterung) — Фотографический обзор с мыса Доброй Надежды, каталог 454 875 звезд Южного полушария, составлен в 1896-1900 годах голландским астрономом Якобусом Корнелисом Каптейном (1851-1922).

    ** 1С — IndexCatalogue, два дополнительных каталога, появившихся в 1895 и 1908 годах.

    Примечания

    1. Птолемеев Альмагест составляет основу нынешних астрологических данных, хотя земная ось с тех пор сместилась таким образом, что созвездия зодиака более не соответствуют принятым для них месяцам. К тому же после Птолемея было открыто огромное число звезд и даже несколько планет, но это, похоже, не занимает астрологию.

    1. Тихо Браге, последний величайший наблюдатель звездного неба невооруженным глазом не издавал собственного каталога звезд. Эта задача выпала на долю его помощника, достойного уважения Иоганна Кеплера, внесшего лепту в ко пилку астрономических знаний, установившего, что планеты движутся не по круговым, а вытянутым (эллиптическим) орбитам.

    2. Джон Флемстид (1646-1719) основал Королевскую Гринвичскую обсерваторию, став ее первым директором и первым королевским астрономом. Это был край не скрупулезный наблюдатель, чей список звезд по численности и точности координат превзошел все прежние каталоги. Современники Эдмунд Галлей и Исаак Ньютон через Королевское общество торопили Флемстида обнародовать свои наблюдения как можно раньше, хоть они и были еще не завершены. Наконец без согласия и даже ведома Флемстида в 1712 году была напечатана часть его наблюдений в 400 экз., которые были использованы И. Ньютоном при обосновании закона всемирного тяготения. Однако Флемстид настоял на уничтожении этого издания и предпринял новое, названное им «Historia coelestis Britannica». При жизни Флемстида вышел лишь первый том, включавший его наблюдения, произведенные в Денби и Гринвиче над Солнцем, Луной, звездами, планетами, спутниками Юпитера, пятнами на Солнце. Второй том содержит меридианные наблюдения в Гринвиче, третий (1725) — исторический очерк описания инструментов и знаменитый «Бри танский» каталог 2884 звезд. Уже после смерти Ф. был издан (1729) его «Atlas coelestis».

    3. Сэр Уильям Гершель (1738-1822) был урожденным Фридрихом Вильгельмом Гершелем и появился на свет в немецком городе Ганновере. Сын бедного музыканта, Гершель поступил на службу простым полковым гобоистом, но походная жизнь ему не понравилась, и уже в 1757 году он дезертировал с военной службы и прибыл в Англию, куда несколько ранее переселился брат его Иаков, капельмейстер ганноверского полка. Здесь Гершель стал органистом и учителем музыки. В 1772 году к нему присоединилась сестра Каролина Лукреция. Вскоре у него пробудился интерес к астрономии, так что бравшие у него уроки музыки ученики постигали не только музыку, но и астрономию. Не имея дома помещения для телескопа, он установил его на улице. Это зрелище привлекало посетителей, одним из которых оказался доктор Уильям Ватсон, член Королевского общества, представивший на его суд некоторые заметки Гершеля о высоте гор на Луне.

    В последующие два года Гершель обнаружил яркое небесное тело там, где прежние карты не показывали никаких звезд. Это медленно движущееся тело оказалось планетой, названной Гершелем Georgium sidus («Звездой Георгия»), в честь короля Георгия III, позже переименованной в Уран. Это открытие определило карьеру Гершеля; король Георг III, любитель астрономии и покровитель ганноверцев, снабдил его средствами для постройки отдельной обсерватории в Слоу, близ Виндзора, и назначил ему ежегодное содержание в 300 гиней. Здесь Гершель с юношеским жаром и необыкновенным усердием принялся за астрономические наблюдения. По словам биографа, он выходил из обсерватории только для того, чтобы представлять Королевскому обществу результаты своих неусыпных трудов. Он выписал из Ганновера сестру Каролину, которая затем не покидала брата до самой его смерти и была превосходным помощником; она не только записывала наблюдения, но и производила вычисления. Гершель был избран членом Королевского общества, получил звание придворного астронома наряду с сестрой и помощником.

    50-летний Гершель женится на вдове Мери Питт, коренной англичанке. У них рождается сын, Джон Фредерик, учившийся вначале в Кембридже на математика, но затем обратившийся к астрономии, чтобы завершить звездный каталог своего отца.

    1. Йохан Людвиг (Джон Луис) Эмиль Дрейер (1852-1926) родился в Копенгагене (Дания). В 1872 году он работал помощником [Уильяма Парсонса] лорда Рос са в его поместье Бир-Касл близ Парсонстауна, что между Дублином и Лимериком в Ирландии. Лорд Росс построил крупнейший в мире телескоп, 72-дюймовое чудише, прозванное Левиафаном из Парсонстауна. В 1845 году, отмеченном страшным голодом, наблюдения были свернуты, но когда телескоп вновь заработал, Дрейеру удалось выявить много удаленных небесных тел, добавив в Общий ката лог (NewGeneralCatalog) Гершеля тысячу новых имен. Основной труд Дрейер проделал в обсерватории г. Арма, где по заданию Королевского общества составил Новый общий каталог (NewGeneralCatalog— NGC).

    2. Генри Дрейпер (1837-1882) был медиком и астрономом-любителем, в 1872 году сделавшим первый снимок спектра у звезды, которой оказалась Вега. После безвременной кончины Дрейпера вдова учредила на его средства фонд поощрения работ по фотографическому изучению спектра звезд в Гарвардской обсерватории, который возглавил Эдвард Пикеринг (см. гл. 6).

    После 1910 года одна из представительниц пикеринговского «гарема», Энни Джамп Кэннон приступила к классификации звезд по их спектру. Она разработала схему распределения звезд по спектральным классам OBAFGKM (для лучшего запоминания студентами читается как Oh, BeAFineGirl (Guy), KissMe), классифицировав no 50 тыс. звезд в год, так что за 40 лет работы ей удалось охватить своей схемой 400 тыс. звезд. В 1938 году, за два года до ухода на пенсию, она получила должность в Гарварде подобно той, что занимал астроном Уильям Кранч Бонд (1789-1859).

    За более подробными сведениями обращайтесь на узел Всемирной Паутины www.seds.org/spider/Misc/star_cats.html



    15. Труды Эйнштейна: помимо теории относительности

    Альберт Эйнштейн в 1905 году напечатал в германском ежемесячном журнале по физике AnnalenderPhysikundChemieпять статей.

    В представленной Цюрихскому университету в апреле и защищенной в июле 1905 года докторской диссертации «Новое определение размеров молекул» Эйнштейн показал, как определить число Авогадро (знаменитую величину 6,02 х 1023, равную числу содержащихся в 1 моле вещества молекул) и размеры ионов в растворе на основе измеренных значений осмотического давления и коэффициента диффузии. Данный труд принес ему звание доктора философии и спустя уже почти 100 лет остается одним из наиболее часто цитируемых в научной литературе.



    В работе «О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты» разъяснялось, каким образом зигзагообразное движение молекул, наблюдаемое под микроскопом, вызывалось столкновениями с движущимися молекулами в жидкости. Сами молекулы из-за малой величины не были видны, но итоговое движение более крупного тела наблюдалось микроскопистами, в том числе Робертом Броуном. Такое движение стало называться броуновским. Статья Эйнштейна укрепила связь между кинетической теорией и наблюдаемыми явлениями.

    Статью «Об одной эвристической точке зрения, касающейся возникновения и превращения света» Эйнштейн называл революционной, что на самом деле так и было. Неудовлетворенный описанием материи как дискретного состояния, противопоставляемого непрерывной природе электромагнитного излучения, Эйнштейн предположил, что свет в некоторых отношениях следует рассматривать подобно частицам. Он показал, что данный подход согласуется с исследованием Планка излучаемого нагретым телом света. Подойдя с той же меркой к фотоэлектрическому эффекту, когда падающий на металлическую поверхность свет приводил к испусканию этой поверхностью электронов, Эйнштейн сумел объяснить некоторые результаты, сбивавшие с толку других ученых. Данная статья способствовала утверждению нового взгляда на свет, где автор с большим вниманием отнесся к выводам Планка, нежели он сам, рассматривавший свое толкование дискретности испускаемой светом энергии скорее как математическую хитрость, а не как точное отображение действительности. Прежде чем написать статью, Эйнштейн почти пять лет размышлял над этим свойством света.

    «К электродинамике движущихся сред» — знаменитая статья Эйнштейна о специальной теории относительности. В ней говорится об обобщении классической относительности, согласно которой законы физики правомерны для любого наблюдателя, движущегося с постоянной скоростью. Например, если подбросить мяч внутри движущегося автомобиля, он взлетит и опустится так, словно вы неподвижно стоите на земле. Второй постулат относительности поистине революционен. Он опровергает представление Ньютона: скорость света для всех наблюдателей, движущихся с постоянной скоростью, постоянна, а пространство и время — относительны по отношению к нему, в отличие от придаваемого им Ньютоном абсолютного характера. Как явствует из письма Эйнштейна своему внуку, ученый размышлял над данным вопросом по меньшей мере семь лет, прежде чем появилась на свет эта статья.

    Последняя статья 1905 года «Зависит ли инерция тела от содержащейся в нем энергии», будучи дополнением предыдущей статьи, стала своего рода математической сноской к специальной теории относительности, поскольку содержала связывающее массу и энергию уравнение. Оно было выражено как т = L/V2, где Vскорость света, а не в привычном для всех ныне виде Е = тс2.

    За более подробными сведениями обращайтесь к книге: Einstein's Miraculous Year: Five Papers That Changed the Face of Physics. Princeton, 1998.

    Благодаря огромному вкладу в ряд областей физики невольно складывается впечатление, что Эйнштейн весьма серьезно относился к своим научным занятиям. Но вот что он пишет по поводу своих четырех статей близкому другу Конраду Габихту 18 мая 1905 года:

    «Между нами воцарилось такое молчание, что я ощущаю себя чуть ли не святотатцем, нарушая его своим невразумительным лепетом. Итак, что же происходит с тобой, ты, бесчувственный сухарь?.. Почему до сих пор так и не прислал своей диссертации? Разве не знаешь, что я один из полутора горемык, что прочитали бы ее с любопытством и удовольствием, черт бы тебя побрал! Я же обещаю тебе взамен четыре статьи. В первой речь идет об излучении и энергетических свойствах света, и она достаточно революционна, в чем сам убедишься, если вначале пришлешь мне свой опус. Вторая занята определением истинных размеров атомов. Третья доказывает, что тела порядка '/1000 мм, взвешенные в жидкости, вынуждены совершать наблюдаемое случайное движение, обусловленное тепловым движением. Четвертая же представляет пока лишь набросок и касается электродинамики движущихся тел с привлечением видоизмененной теории пространства и времени».

    Каким образом Эйнштейну удалось написать пять статей, столь повлиявших на развитие физики, всего за год? Возможно, вы скажете, что он был математическим гением, преуспевал в школе, много читал и трудился в научной обстановке, которая давала много времени для теоретической работы. Это не так.

    В 1905 году Альберту Эйнштейну исполнилось 26 лет, он целыми днями был занят в Швейцарском патентном бюро Берна, состоял в браке с Милевой Марич (1875-1948), возлюбленной еще со студенческой скамьи, и был отцом годовалого ребенка, Ганса Альберта.

    Вот несколько высказываний Альберта Эйнштейна о себе:

    «У меня нет никакого особого таланта. Я всего лишь любознателен».

    «Я вовсе не так уж и умен, просто я больше просиживаю над вопросами».

    «Сами мысли не приходили в некой словесной оболочке. Я вообще редко мыслю словами. Приходит в голову мысль, и я лишь пытаюсь облечь ее в слова».

    Однажды Эйнштейн в ответ на просьбу 12-летней девочки [из Бруклина] помочь ей с выполнением домашнего задания послал ей письмо с целой страницей формул, сопровождая их такими словами:

    «Пусть тебя не смущают нелады с математикой; заверяю тебя, у меня их было значительно больше.

    Порой я спрашиваю себя, как мне удалось создать теорию относительности. Причина, по моему разумению, в том, что обычный взрослый просто никогда не задумывается над вопросами пространства и времени. Они волновали его, когда он был ребенком. Но мое умственное развитие запоздало, отчего любопытство к пространству и времени у меня пробудилось, когда я уже вырос».

    Многие биографы, повествуя о ранних годах учебы Эйнштейна, отмечают его независимость, нежелание следовать авторитетам и многочисленные неудачи. Некоторые заключают, что он страдал необучаемостью, возможно дислексией (неспособностью к чтению). Следующее высказывание, возможно, внесет некоторую ясность: «Чтение после определенного возраста слишком уж отвлекает ум от его творческих устремлений. Тот, кто слишком много читает и слишком мало пользуется собственными мозгами, приобретает леность мышления».

    Конечно, умственные способности Эйнштейна был] значительно выше средних, но, пожалуй, важнее было ел умение сосредотачиваться. Некоторые назвали бы это упорством, но дар направлять свои незаурядные способности на что-то одно его изрядно выручал. Однако поглощенность наукой, видимо, не могла сделать из него идеального муж и отца. Завоевав известность своими научными трудами Эйнштейн стал получать приглашения занять ту или иную академическую должность, и ему приходилось много разъезжать. Все это не прошло даром, и в 1919 году они с Миле вой разводятся. Одним из условий развода значилась выплата Эйнштейном Милеве части его будущей Нобелевской премии. Нобелевскую премию ему присудили в 1921 году (за объяснение механизма фотоэлектрического эффекта), i бывшая жена с детьми получили причитающиеся деньги.

    В 1919 году Альберт Эйнштейн женился на вдове своего двоюродного брата Эльзе, продолжал свою научную работ и много ездил, везде играя на своей скрипке. Хотя немногие разбирались в его теории, язык музыки был понятен всем. 1 1919 году пришло первое опытное подтверждение его об щей теории относительности, добавившее ему славы С приходом к власти в Германии нацистов миролюбцу и еврею Эйнштейну приходилось все труднее. В итоге он бежит в США. В Принстонском институте высших исследований он безуспешно пытался построить объединенную теории поля. До конца своей жизни (1955) Эйнштейн оставался непререкаемым авторитетом в физике.

    «Мир нуждается в героях, и лучше, чтобы это были безобидные вроде меня люди, а не злодеи наподобие Гитлера».

    Альберт Эйнштейн

    16. «Большой взрыв»

    Теория «большого взрыва» о порождении Вселенной утверждает, что все вещество и энергия берут начало 14 млрд. лет назад из одной точки, после чего Вселенная начала расширяться. На первых порах расширение было стремительным, получив название раздувания (инфляции), а затем из-за влияния тяготения оно замедлилось. Теперь же оно вновь ускоряется под действием темной энергии.

    За более подробными сведениями, содержащими опытные данные, обращайтесь к нашей книге Пять крупнейших представлений в науке (The Five Biggest Ideas in Science. NY, 1997).



    Источники для углубленного изучения

    Источники общего характера

    Книги

    Anton Ted. Bold Science; Seven Scientists Who Are Changing Our World. N.Y.: W. H. Freeman and Co., 2000.

    Kaku Michio. Hyperspace. London: Oxford University Press, 1994.

    Kaku Michio. Visions. N.Y.: Anchor Books, 1997.

    Kuhn Robert L. Closer to Truth Challenging Current Belief. N.Y.: McGraw-Hill, 2000.

    Периодические издания

    Discover

    Science

    Science Week

    Узел Всемирной Паутины

    www.mkaku.org

    1   ...   10   11   12   13   14   15   16   17   18


    написать администратору сайта