Главная страница

шпора Экз. по ткм. Азотирование это технологический процесс


Скачать 480.63 Kb.
НазваниеАзотирование это технологический процесс
Анкоршпора Экз. по ткм
Дата04.06.2021
Размер480.63 Kb.
Формат файлаdocx
Имя файлашпора Экз. по ткм.docx
ТипДокументы
#214050
страница4 из 9
1   2   3   4   5   6   7   8   9

Алюминий и его сплавы


Алюминий имеет огромное значение в промышленности из-за высокой пластичности, большой тепло и электропроводности, слабой коррозии, т.к. образующая на поверхности пленка Al2O3 защищает металл от окисления. Из него делают тонкий прокат, фольгу, любой профиль прессованием и другими видами обработки давления. Из него изготавливают разного типа провода, применяют в электроаппаратуре.
Как конструкционный материал алюминий чаще всего применяется в сплавах со следующими легирующими элементами: Cu, Zn, Mg, Ni, Fe, Mn, Ti, Si, Cr, которые формируют упрочняющие зоны и фазы.

Сплав алюминия с медью называется дуралюминием (дюраль); сплав с кремнием – силумин – только литейный сплав. Сплав с марганцем – АМц одновременно повышает коррозионную стойкость; Ni, Ti, Cr, Fe повышает жаропрочность сплавов, затормаживая процесс диффузии; литий и бериллий способствуют возрастанию модуля упругости.

Все алюминиевые сплавы можно разделить на деформируемые (получают
лист, трубы, профиль, паковки, штамповки) и литейные – для фасонного литья.
Сплавы алюминия нашли широкое применение прежде всего в авиации,
автомобилестроении, судостроении и др.отраслях народного хозяйства.

Алюминиевые сплавы подразделяются на деформируемые и литейные. Порошковые материалы, композиты деформируются, а иногда льются.

Неупрочняемые сплавы Al – Mn (АМц) и Al – Mg (АМг). Это коррозион-
ностойкие материалы, идущие на изготовление бензо -, маслобаков, корпусов
судов.

Упрочняемые сплавы Al -Mg – Si (АВ, АД31, АД33) идут для изготовления лопастей и деталей кабин вертолетов, барабанов колес гидросамолетов.

Дуралюмины Al – Cu – Mg (Д1, Д16, Д18, Д19, ВД17, В93, В95, В96 и др.).

Дюраль содержит
от 2 до 4,5 Cu и, кроме того, он часто легируется Mg (0.5%), Mn, Fe, Be, Si, Zn. Перечисленные элементы образуют ряд химических соединений, растворяемых в алюминии – матрице (CuAl2, Mg2Si) и нерастворимых Fe, Mn, Cu. Механические свойства после закалки и старения (отпуска) зависят от температуры закалки и старения, скорости охлаждения.

Высокопрочные сплавы Al – Zn – Mg – Cu (В93, В95, В96Ц) более прочны, чем дюралюминий, обладают лучшей коррозионной стойкостью и применяются для изготовления шпангоутов, лонжеронов, стрингеров. Алюминиевые сплавы часто применяются для изготовления поковок штамповок лопастей винта самолета, рам, поясов лонжеронов, крепежных деталей. Это сплавы АК1, АК6, АК8, АК4.

Жаропрочные алюминиевые сплавы системы Al – Cu – Mn (Д20, Д21) и Al – Cu – Mg – Fe – Ni (АК – 4 – 1) применяют для изготовления поршней, головок цилиндров, дисков, лопаток компрессоров и т.д., работающих при температурах до 300°С. Жаропрочность достигается за счет легирования Ni, Fe, Ti, (Д20, Д21, АК – 4 – 1).

Литейные алюминиевые сплавы применяются для изготовления литых заготовок. Это сплавы Al – Si (силумины), Al – Cu (дюрали), Al – Mg (Амг). К силуминам относятся сплавы Al – Si (AЛ – 2), Al – Si – Mg (АЛ – 4, АЛ – 9, АЛ – 34), которые упрочняются термообработкой. Силумины хорошо льются, обрабатываются резанием, свариваются, анодируются, пропитываются лаками.

Высокопрочные и жаропрочные литейные сплавы систем Аl – Cu – Mn (АЛ – 19), Al – Cu – Mn – Ni (АЛ – 33), Al – Si – Cu – Mg (АЛ – 3, АЛ – 5). Легированные Ti, Cr, Ni, Cl, Zn жаропрочны до 300°С, хорошо термообрабатываются. Из них изготавливают поршни, головки блока, цилиндров и т.п.

Коррозионностойкие литейные алюминиевые сплавы систем Al – Mg (АЛ8, АЛ27) и Al – Mg – Zn (АЛ24) хорошо льются и свариваются. Легирование Be, Ti, Zn вызывает изменение зерна. Они термообрабатываются.

39

Главное достоинство магния, как технического металла - малый удельный вес, порядка 1,7, т. е. почти в четыре раза меньший, чем у меди и железа, и значительно меньший, чем у алюминия. Как простой (чистый) металл он не отличается прочностью и твердостью и немного превосходит в этом отношении алюминий (Нa 25; а„ - 12 кг/мм2).

 

Что же касается пластичности, то он значительно уступает алюминию: 8 10%; ф 15%; так что при нормальной температуре он мало пластичен, и обработка его давлением «нахолоду» затруднена.

 

Она обычно производится при нагреве до 200- 500° С. Отсюда понятно, что и магний в качестве машиноподелочного материала не находит применения в чистом виде и используется в виде сплавов. Марки металла, идущего на сплавы, различаются по количеству примесей, причем наивысшая марка (МГ-1 по ГОСТ) содержит цветные металлы и сплавы.

 

в сумме менее 0,1% примесей (Fe, Si, Al, Na и др.). Точка плавления Mg - 650°. Главными недостатками магния как технического металла являются: малая стойкость против коррозии на воздухе и в воде (особенно морской), а также сильная окисляемость при нагреве; при этом выше 600° он загорается со вспышкой, что создает опасность воспламенения металла при плавке, а также при обработке резанием.

 

Интенсивное окисление в расплавленном состоянии создает неудобства при плавке: необходимость иметь нейтральную атмосферу (например, аргон), не содержащую даже азот, легко растворяющийся в-жидком металле. В вакууме магний легко возгоняется.

 

Сплавы магния. Сохраняя указанные недочеты основного металла, сплавы магния имеют по сравнению с ним повышенную твердость и прочность. Наиболее применимы простые сплавы с алюминием (системы Mg-Al, фиг. 225) с содержанием А1 до 10%. Как видно из диаграммы, со стороны Mg образуется твердый раствор (3), имеющий линию предельного насыщения между 12, 1 и 4,0% Al, и, следовательно, технические сплавы в равновесном (отожженном) состоянии должны представлять 8-твердый раствор с небольшими выделениями вторичной фазы.

 

Они могут подвергаться закалке и старению (дисперсионному твердению) с выделением мелкодисперсных частиц 7-фазы, но эффект от этого процесса,здесь незначителен, и потому эта операция обычно не применяется в практике.

 

Понятно, что и в этих сплавах практикуется добавка других элементов для улучшения качества. Наиболее часто добавляются Zn и Мп. Последний, как и в алюминиевых сплавах, считается благоприятным в отношении повышения стойкости против коррозии. Установлено также, что весьма полезной добавкой является цирконий в количестве десятых процента.

 

Сплавы магния, называемые вообще ультралегкими, были известны раньше под разными названиями («электрон», «доуме-талл» и т. п.). В ГОСТ они обозначаются марками: буквой М с другой рядом стоящей буквой А - для обрабатываемых сплавов и Л - для литейных; затем следует цифра, соответствующая нумерации, не совпадающей с составом сплавов.

Прочность и твердость магниевых сплавов в среднем не превосходят ae 25 кг/мм и Нв - 70, при удлинении 8 - 5-10%. Несмотря на столь низкие механические характеристики, при отнесении их к единице веса получаются числа «удельной прочности», иногда превосходящие таковые в других сплавах, что и оправдывает техническое применение магниевых сплавов.

 

В последнее время стали получать сплавы магния (с цинком), в которых предел прочности достигает 35-40 кг/мм1 при удлинении 8-16%. Такие сплавы, вопреки мнению о возможности проката магниевых сплавов только при малых скоростях, допускают прокат при относительно больших скоростях с одного нагрева (440°) с толщины 250 до 5 мм.

40
1   2   3   4   5   6   7   8   9


написать администратору сайта