РП математика 5-9 кл. Рабочая программа по математике 5-9 классы. Башортостан Республикаhы Благовар районы муниципаль районы Кашкалаша ауылынын урта дйм белем бире мктбе муниципаль бюджет дйм белем бире учреждениее
Скачать 1.08 Mb.
|
Тематическое планирование по алгебре
ГЕОМЕТРИЯ 1. Начальные геометрические сведения (11 часов) Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые. Основная цель — систематизировать знания учащихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур. В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений учащихся путем обобщения очевидных или известных из курса математики 1—6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий. 2. Треугольники (16 часов) Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки. Основная цель — ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач — на построение с помощью циркуля и линейки. Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснование их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников. Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами. 3. Параллельные прямые (11 часов) Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых. Основная цель — ввести одно из важнейших понятий — понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых. Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии. 4. Соотношения между сторонами и углами треугольника (21 час) Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам. Основная цель — рассмотреть новые интересные и важные свойства треугольников. В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников. Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, в частности используется в задачах на построение. При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи. 5. Повторение. Решение задач (7 часов) Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 7 классе. Тематическое планирование по геометрии
Учебно-методическое обеспечение для учащихся: Алгебра-7:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2012год. Дидактические материалы Алгебра 7 класс (Л.И. Звавич, Л.В. Кузнецова, С.Б. Суворова, М., 2010 г. Геометрия 7 – 9: Учебник для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2012. Дидактические материалы Геометрия (Б.Г. Зив, В.М. Мейлер), М.,2008 Энциклопедия для детей. Математика. Т. 11. - М., 1998. Диск «Математика. Справочник для школьника» Сайты для учащихся: Интерактивный учебник. Математика 7 класс. Правила, задачи, примеры http://www.matematika-na.ru Энциклопедия для детей http://the800.info/yentsiklopediya-dlya-detey-matematika Энциклопедия по математике http://www.krugosvet.ru/enc/nauka_i_tehnika/matematika/MATEMATIKA.html Справочник по математике для школьников http://www.resolventa.ru/demo/demomath.htm Математика он-лайн http://uchit.rastu.ru для учителя: Алгебра-7:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2012. Алгебра. 7 класс: поурочные планы по учебнику Ю.Н. Макарычева и др. / авт.-сост. Т.Ю. Дюмина, – Волгоград: Учитель, 2011. Дидактические материалы Алгебра 7 класс (Л.И. Звавич, Л.В. Кузнецова, С.Б. Суворова, М., 2008 . Гаврилова Н.Ф. Поурочные разработки по геометрии: 7 класс. – М.: ВАКО, 2010. Геометрия 7 – 9: Учебник для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2009. Дидактические материалы Геометрия (Б.Г. Зив, В.М. Мейлер), М.,2008. Гаврилова Н.Ф. Универсальные поурочные разработки по геометрии: 7 класс. – М.: ВАКО:2011. Мищенко Т.М. Тематические тесты по геометрии: 7-й кл.: к учебнику Л.С. Атанасяна и др. «Геометрия 7-9 классы»: -М.: Экзамен, 2008. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007. Нестандартные уроки алгебры. 7 класс. Сост. Ким Н.А. – Волгоград: ИТД «Корифей», 2006. Педсовет, математика http://pedsovet.su/load/135 Учительский портал. Математика http://www.uchportal.ru/load/28 Уроки. Нет. Для учителя математики, алгебры, геометрии http://www.uroki.net/docmat.htm Требования к уровню подготовки учащихся к окончанию 7 класса Выпускник научится в 7 классе (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне) Элементы теории множеств и математической логики оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность; задавать множества перечислением их элементов; находить пересечение, объединение, подмножество в простейших ситуациях; оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство; приводить примеры и контрпримеры для подтверждения своих высказываний. В повседневной жизни и при изучении других предметов: использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов. Числа оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень; использовать свойства чисел и правила действий при выполнении вычислений; использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач; выполнять округление рациональных чисел в соответствии с правилами; оценивать значение квадратного корня из положительного целого числа; распознавать рациональные и иррациональные числа; сравнивать числа. В повседневной жизни и при изучении других предметов: оценивать результаты вычислений при решении практических задач; выполнять сравнение чисел в реальных ситуациях; составлять числовые выражения при решении практических задач и задач из других учебных предметов. Тождественные преобразования выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем; выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые; использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений; выполнять несложные преобразования дробно-линейных выражений. В повседневной жизни и при изучении других предметов: понимать смысл записи числа в стандартном виде; оперировать на базовом уровне понятием «стандартная запись числа». Уравнения и неравенства оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения; решать системы несложных линейных уравнений; проверять, является ли данное число решением уравнения. В повседневной жизни и при изучении других предметов: составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах. Функции находить значение функции по заданному значению аргумента; находить значение аргумента по заданному значению функции в несложных ситуациях; определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости; по графику находить область определения, множество значений, нули функции; строить график линейной функции; проверять, является ли данный график графиком заданной функции (линейной, прямой пропорциональности); определять приближенные значения координат точки пересечения графиков функций. В повседневной жизни и при изучении других предметов: использовать свойства линейной функции и ее график при решении задач из других учебных предметов. Статистика и теория вероятностей иметь представление о статистических характеристиках; представлять данные в виде таблиц, диаграмм, графиков; читать информацию, представленную в виде таблицы, диаграммы, графика; определять основные статистические характеристики числовых наборов. В повседневной жизни и при изучении других предметов: сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления. Текстовые задачи решать несложные сюжетные задачи разных типов на все арифметические действия; строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи; осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию; составлять план решения задачи; выделять этапы решения задачи; интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи; знать различие скоростей объекта в стоячей воде, против течения и по течению реки; решать задачи на нахождение части числа и числа по его части; решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними; находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины; решать несложные логические задачи методом рассуждений. В повседневной жизни и при изучении других предметов: выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку). Геометрические фигуры оперировать на базовом уровне понятиями геометрических фигур; извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде; применять для решения задач геометрические факты, если условия их применения заданы в явной форме; решать задачи на нахождение геометрических величин по образцам или алгоритмам. В повседневной жизни и при изучении других предметов: использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания. Отношения оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр. В повседневной жизни и при изучении других предметов: использовать отношения для решения простейших задач, возникающих в реальной жизни. Измерения и вычисления выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов; применять формулы периметра, площади и объема; применять базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях. В повседневной жизни и при изучении других предметов: вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни. Геометрические построения изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов. В повседневной жизни и при изучении других предметов: выполнять простейшие построения на местности, необходимые в реальной жизни. Геометрические преобразования строить фигуру, симметричную данной фигуре относительно оси и точки. В повседневной жизни и при изучении других предметов: распознавать движение объектов в окружающем мире; распознавать симметричные фигуры в окружающем мире. Векторы и координаты на плоскости оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число, координаты на плоскости; определять приближенно координаты точки по ее изображению на координатной плоскости. В повседневной жизни и при изучении других предметов: использовать векторы для решения простейших задач на определение скорости относительного движения. История математики писывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки; знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей; понимать роль математики в развитии России. Методы математики выбирать подходящий изученный метод для решения изученных типов математических задач; приводить примеры математических закономерностей в окружающей действительности и произведениях искусства. Выпускник получит возможность научиться в 7 классе для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях Элементы теории множеств и математической логики оперировать понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств; изображать множества и отношение множеств с помощью кругов Эйлера; определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания; оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации); строить высказывания, отрицания высказываний. В повседневной жизни и при изучении других предметов: строить цепочки умозаключений на основе использования правил логики; использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений. Числа оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел; понимать и объяснять смысл позиционной записи натурального числа; выполнять вычисления, в том числе с использованием приемов рациональных вычислений; выполнять округление рациональных чисел с заданной точностью; сравнивать рациональные и иррациональные числа; представлять рациональное число в виде десятичной дроби упорядочивать числа, записанные в виде обыкновенной и десятичной дроби; находить НОД и НОК чисел и использовать их при решении задач. В повседневной жизни и при изучении других предметов: применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов; выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений; составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов; записывать и округлять числовые значения реальных величин с использованием разных систем измерения. Тождественные преобразования оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем; выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение); выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения; выделять квадрат суммы и разности одночленов; выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби; выполнять преобразования выражений, содержащих модуль. В повседневной жизни и при изучении других предметов: выполнять преобразования и действия с числами, записанными в стандартном виде; выполнять преобразования алгебраических выражений при решении задач других учебных предметов. Уравнения и неравенства оперировать понятиями: уравнение, неравенство, корень уравнения, равносильные уравнения, область определения уравнения (неравенства, системы уравнений); решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований; решать линейные уравнения с параметрами; решать несложные системы линейных уравнений с параметрами. В повседневной жизни и при изучении других предметов: составлять и решать линейные уравнения, и уравнения к ним сводящиеся, системы линейных уравнений при решении задач других учебных предметов; выполнять оценку правдоподобия результатов, получаемых при решении линейных уравнений и систем линейных уравнений при решении задач других учебных предметов; выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи; уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи. Функции оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции,; строить графики линейной функции; составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой; исследовать функцию по ее графику. В повседневной жизни и при изучении других предметов: иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам; использовать свойства и график квадратичной функции при решении задач из других учебных предметов. Текстовые задачи решать простые и сложные задачи разных типов, а также задачи повышенной трудности; использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач; различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи; знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию); моделировать рассуждения при поиске решения задач с помощью граф-схемы; выделять этапы решения задачи и содержание каждого этапа; уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно; анализировать затруднения при решении задач; выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные; интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи; анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях; исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета; решать разнообразные задачи «на части», решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби; осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов; владеть основными методами решения задач на смеси, сплавы, концентрации; решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы; решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц; решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение; решать несложные задачи по математической статистике; овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях. В повседневной жизни и при изучении других предметов: выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат; решать задачи на движение по реке, рассматривая разные системы отсчета. Статистика и теория вероятностей оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость; извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики на основе данных; В повседневной жизни и при изучении других предметов: извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений; определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи; оценивать вероятность реальных событий и явлений. Геометрические фигуры оперировать понятиями геометрических фигур; извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах; применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения; формулировать в простейших случаях свойства и признаки фигур; доказывать геометрические утверждения; владеть стандартной классификацией плоских фигур (треугольников и четырехугольников). В повседневной жизни и при изучении других предметов: использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин. Отношения оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр; применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач; характеризовать взаимное расположение прямой и окружности, двух окружностей. В повседневной жизни и при изучении других предметов: использовать отношения для решения задач, возникающих в реальной жизни. Измерения и вычисления оперировать представлениями о длине, площади, объеме как величинами; применять формулы площади при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами; формулировать задачи на вычисление длин, площадей и решать их. В повседневной жизни и при изучении других предметов: проводить вычисления на местности; применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности. Геометрические построения изображать геометрические фигуры по текстовому и символьному описанию; свободно оперировать чертежными инструментами в несложных случаях, выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений; изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов. В повседневной жизни и при изучении других предметов: выполнять простейшие построения на местности, необходимые в реальной жизни; оценивать размеры реальных объектов окружающего мира. Геометрические преобразования оперировать понятием движения и преобразования подобия, владеть приемами построения фигур с использованием движений, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира; применять свойства движений для проведения простейших обоснований свойств фигур. В повседневной жизни и при изучении других предметов: применять свойства движений и применять подобие для построений и вычислений. История математики характеризовать вклад выдающихся математиков в развитие математики и иных научных областей; понимать роль математики в развитии России. Методы математики используя изученные методы, проводить доказательство, выполнять опровержение; выбирать изученные методы и их комбинации для решения математических задач; использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства; применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач. 8 класс АЛГЕБРА Пояснительная записка 8 класс Настоящая рабочая программа разработана в соответствии с основными положениями федерального государственного образовательного стандарта основного общего образования и примерной программы основного общего образования по учебным предметам «Стандарты второго поколения. Математика 5 – 9 класс». Для реализации программы используется УМК: Алгебра. Учебник для 8 класса./ Ю.Н.Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б.Суворова и Геометрия. Учебник для 8 класса./ Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. Целью изучения курса математики в 8 классе является овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин; интеллектуальное развитие; формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей; формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования процессов; воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно – технического процесса. Изучение математики в 8-м классе направлено на достижение следующих задач: выработать умение выполнять тождественные преобразования рациональных выражений, систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразование выражений, содержащих квадратный корень, решать квадратные и простейшие рациональные уравнения, применять их к решению задач; ознакомить учащихся с применением неравенств для оценки значений выражений; выработать умение решать линейные неравенства с одной переменной и их системы; расширить понятие степени, рассмотреть свойства степени с целым показателем; сформировать представления о сборе и группировке статистических данных, наглядной интерпретации; расширить и углубить знания о геометрических фигурах. Место учебного предмета в учебном плане Рабочая программа по математике для 8-х классов рассчитана на 170 часов в год, из расчёта 5 часов в неделю. На изучение алгебры отводится 102 часа, на изучение геометрии – 68 часов. |